Triangulation de Delaunay et metrique riemannienne. Applications aux maillages elements finis

Authors

  • Houman Borouchaki INRIA Rocquencourt BP105 78 153 Le Chesnay Cedex
  • Paul Louis George INRIA Rocquencourt BP105 78 153 Le Chesnay Cedex

Keywords:

triangulation, riemanian space, anisotropic mesh generation, finite element

Abstract

This paper describes the extension of the classical Delaunay method in the case where a riemannian context is specified.

 

Downloads

Download data is not yet available.

References

[BAK 88] T.J. BAKER, Generation of tetrahedral meshes around complete aircraft,

Numerical grid generation in computational fluid mechanics'BB, Miami, 1988.

[BOY 95] J.D. BOISSONNAT, M. YVINEC, Geometric algorithmique, Edisciences,

Paris, 1995.

[BOG 96] H. BOROUCHAKI, P.L. GEORGE, S.H. Lo, Optimal Delaunay point insertion,

a paraitre dans Int. Jour. Num. Meth. Eng.

[BOG 96] H. BOROUCHAKI, P.L. GEORGE, Aspects of 2D Delauooy mesh generation,

a paraitre.

[CAY 85] J.C. CAVENDISH, D.A. FIELD, W.H. FREY, An approach to automatic

D finite element mesh generation, Int. Jour. Num. Meth. Eng., vol21, 1985.

[GEO 91] P.L. GEORGE, Generation automatique de maillage. Applications aux methodes

d'elementsfinis, Masson, RMA n° 16, Paris, 1991. Also as Automatic

mesh generation. Applications to finite element methods, Wiley, 1991.

[GHS 90] P.L. GEORGE, F. HECHT, E. SAL TEL, Fully automatic mesh generator for

d domains of any shape, ImpactofComp. in Sci. and Eng., 2, pp 187-218, 1990.

[GHS 91] P.L. GEORGE, F. HECHT, E. SALTEL, Automatic mesh generator with

specified boundary, Comp. Meth. in Appl. Mech. and Eng., vol 92, pp. 269-288,

[GHV 91] P.L. GEORGE, F. HECHT, M.G. VALLET, Creation of internal points in

Voronoi's type method, Control and adaptation, Adv. in Eng. Soft., 13, n° 5/6, pp.

-313, 1991.

[GEH 92] P.L. GEORGE, F. HERMELINE, Delaunay's mesh of a convex polyhedron

in dimension d. Application to arbitrary polyhedra, Int. Jour. Num. Meth. Eng.,

vol 33, pp. 975-995, 1992.

(PVM 87] J. PERAIRE, M. VAHDAT!, K. MORGAN, O.C. ZIENKIEWICZ, Adaptive

remeshing for compressible flow computations, Jour. of Comput. Phys., vol 72,

pp 449-466, 1987.

[PSH 85] F.P. PREPARATA, M.l. SHAMOS, Computational geometry, an introduction,

Springer-Verlag, 1985.

[VAL 92] M.G. VALLET, Generation de maillages elements finis ani so tropes et adaptatifs,

These, Universite Paris 6, 1992.

[WAT 81] D.F. WATSON, Computing the n-dimensionnal Delaunay tesselation with

applications to Voronoi polytopes, Computer Joumal24 (2), 1981.

[WEA 90] N.P. WEATHERILL, The integrity of geometrical boundaries in the 2-

dimensional Delaunay triangulation, Comm. in Appl. Num. Meth., vol6, pp 101-

, 1990.

Downloads

Published

1996-03-28

How to Cite

Borouchaki, H. ., & George, P. L. (1996). Triangulation de Delaunay et metrique riemannienne. Applications aux maillages elements finis. European Journal of Computational Mechanics, 5(3), 323–340. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3521

Issue

Section

Original Article