Triangulation de Delaunay et metrique riemannienne. Applications aux maillages elements finis
Keywords:
triangulation, riemanian space, anisotropic mesh generation, finite elementAbstract
This paper describes the extension of the classical Delaunay method in the case where a riemannian context is specified.
Downloads
References
[BAK 88] T.J. BAKER, Generation of tetrahedral meshes around complete aircraft,
Numerical grid generation in computational fluid mechanics'BB, Miami, 1988.
[BOY 95] J.D. BOISSONNAT, M. YVINEC, Geometric algorithmique, Edisciences,
Paris, 1995.
[BOG 96] H. BOROUCHAKI, P.L. GEORGE, S.H. Lo, Optimal Delaunay point insertion,
a paraitre dans Int. Jour. Num. Meth. Eng.
[BOG 96] H. BOROUCHAKI, P.L. GEORGE, Aspects of 2D Delauooy mesh generation,
a paraitre.
[CAY 85] J.C. CAVENDISH, D.A. FIELD, W.H. FREY, An approach to automatic
D finite element mesh generation, Int. Jour. Num. Meth. Eng., vol21, 1985.
[GEO 91] P.L. GEORGE, Generation automatique de maillage. Applications aux methodes
d'elementsfinis, Masson, RMA n° 16, Paris, 1991. Also as Automatic
mesh generation. Applications to finite element methods, Wiley, 1991.
[GHS 90] P.L. GEORGE, F. HECHT, E. SAL TEL, Fully automatic mesh generator for
d domains of any shape, ImpactofComp. in Sci. and Eng., 2, pp 187-218, 1990.
[GHS 91] P.L. GEORGE, F. HECHT, E. SALTEL, Automatic mesh generator with
specified boundary, Comp. Meth. in Appl. Mech. and Eng., vol 92, pp. 269-288,
[GHV 91] P.L. GEORGE, F. HECHT, M.G. VALLET, Creation of internal points in
Voronoi's type method, Control and adaptation, Adv. in Eng. Soft., 13, n° 5/6, pp.
-313, 1991.
[GEH 92] P.L. GEORGE, F. HERMELINE, Delaunay's mesh of a convex polyhedron
in dimension d. Application to arbitrary polyhedra, Int. Jour. Num. Meth. Eng.,
vol 33, pp. 975-995, 1992.
(PVM 87] J. PERAIRE, M. VAHDAT!, K. MORGAN, O.C. ZIENKIEWICZ, Adaptive
remeshing for compressible flow computations, Jour. of Comput. Phys., vol 72,
pp 449-466, 1987.
[PSH 85] F.P. PREPARATA, M.l. SHAMOS, Computational geometry, an introduction,
Springer-Verlag, 1985.
[VAL 92] M.G. VALLET, Generation de maillages elements finis ani so tropes et adaptatifs,
These, Universite Paris 6, 1992.
[WAT 81] D.F. WATSON, Computing the n-dimensionnal Delaunay tesselation with
applications to Voronoi polytopes, Computer Joumal24 (2), 1981.
[WEA 90] N.P. WEATHERILL, The integrity of geometrical boundaries in the 2-
dimensional Delaunay triangulation, Comm. in Appl. Num. Meth., vol6, pp 101-
, 1990.