Integration geometrie-maillage appliquee aux methodes numeriques
Keywords:
CAD/CAM, automatic mesh generation, three-dimensional, concurrent engineeringAbstract
The work presented here takes place in the general evolution of CAD/CAM systems on the way to a better integration of all functions involved in the design and manufacturing process of mechanical parts (concurrent engineering). We are propounding here an approach of the automatic three-dimensional FE mesh generation problem featuring a pre-optimization based on the a priori evaluation of a dual geometric model (CSG-Exact BREP) in order to identify, directly and automatically, geometric singularities causing stress concentration. This appoach permits to integrate, in a better way, the analysis step in the whole CAD/CAM process in order to achieve the concurrent engineering concept.
Downloads
References
[ALA 90] Alagar, V S, Bui, T D and Periyasamy, K, Semantic CSG trees for finite element
analysis, Comput.-Aided Des. Vol. 22, W 4 (1990), pp 194-198.
[BAB 90] Babuska, I, Suri, M, The p and h-p versions of the Finite element method, an
overview', Comp. Meth. Appl. Mech. Eng., pp 5-26, 1990.
[BAK 89] Baker, T J, Automatic mesh generation for complex three-dimensional regions
using a constrained Delaunay triangulation, Engineering with Computers 5, pp 161-175
(1989).
[BER 89] Berry, K J, Parametric 3D Finite-element mesh generation, Computers and
Structures, Vol. 33, W 4, pp 969-976, 1989.
[BRE 84] Brebbia, C A, Telles, J C F and Wrobel, L C, Boundary element techniques :
theot)' and applications in engineering, Springer Verlag, Berlin, New York 1984.
[CAV 85] Cavendish, J C, Field, D A and Frey, W H, An approach to automatic
three-dimensional finite element mesh generation, Int. J. Numer. Meth. Eng. Vol. 21
(1985), pp 329-347.
[CHA 89] Chae, S W, Bathe, K J, On automatic mesh constmction and mesh refinement in
Finite Element Analysis, Computers and structures, Vol. 32 (1989) N° 3-4, pp 911-936.
[CUI 92] Cuilliere, J C, Maranzana, R and Gueury, M, A direct approach to automatic
three-dimensional finite element mesh refinement, 7th International Conference on
CAD/CAM, Robotics and Factories of the future, 17-19 Aug 92, Metz, France.
[CUI 93] Cuilliere, J C, Pre-optimisation de maillages automatiques tridimensionnels pour
les methodes numeriques- Application a l'ingenierie simultanee, These de Doctorat,
Institut National Polytechnique de Lorraine ( 1993 ).
[DEN 92] Deneux, D, Buczkowski, E, Maranzana, R, PLANET: Towards a new solution for
CAD/CAM integration, UPCAEDM 92, Tenessee Tech. No logical University, Aug 16-
, Cookeville, Tenessee, USA
[DOC 76] Do Carma, M P, Differential geometry of curves and suifaces, Prentice-Hall,
Englewood Cliffs, New Jersey 1976.
[FRE 70) Frederick, C 0, Wong, Y C and Edge, F W, Two-dimensional automatic mesh
generation for stmctural analysis, Int. J. Numer. Meth. Eng. Vol. 2 (1970), pp
-144.
[FRE 87] Frey, W H, Selective refinement: A new strategy for automatic N° de placement in
graded triangular meshes, Int. J. Numer. Meth. Eng., Vol. 24, pp 2183-2200, 1987.
[GEO 91) George, P L, Generation automatique de maillages, applications aux methodes
d'elementsfinis, Masson, Paris 1991.
[HER 76] Herrmann, L R, Laplacian-isoparametric grid generation scheme, J. of Eng.
Mech. Div. Proceedings of Arner. Soc. Civil Eng. Vol. 102 (EMS), (1976).
[HOL 88) Ho-Le, K, Finite element mesh generation methods : a review and classification
Comput.-Aided Des. Vol. 20, W I (I 988), pp 27-38.
[HOL 86) Holt, R C and Narayana, U V L, Adding intelligence to finite element modeling
Expert systems in Government Symp. McLean, VA, USA (1986), pp 326-336.
[KEL 86) Kela, A, Perucchio, Rand Voelcker, H, Toward automatic finite element analysis
Comput. Mech. Eng. (1986), pp 57-71.
[LEE 84] Lee, Y T, Pennington, A D and Shaw, N K, Automatic finite element mesh
generation from geometric models- a point based approach, ACM Trans Graph. Vol. 3,
w 4 (1984 ), pp 287-311.
[LOH 88) Lohner, R and Parikh, P, Generation of three-dimensionalunstmctured gn·ds by
the advancing-front method, International Journal For Numerical Methods in Fluids,
Vol. 8, pp 1135-1149 (1988).
[MAR 88) Maranzana, R, Integration des fonctions de conception et fabrication autour
d'une base de donnees relationnelle, l11ese de doctoral, universite de Valencie1mes
( 1988).
[MCD 91] McDill, J M, Oddy, A S and Goldak, J A, An adaptive mesh-management
algorithm for three-dimensional automatic Finite element analysis, Trans. CSME,
VoL15, WI, 1991.
[MOR 90] Mortenson, ME, Geometn"c modeling, John Wiley & Sons, New York 1985.
[NGU 82] Nguyen-Van-Phai, Automatic mesh generation with tetrahedron elements, Int. J.
Numer. Meth. Eng Vol. 18 (1982), pp 273-289.
[PER 88] Peraire, J, Peiro, J, Formaggia, L, Morgan, K and Zienkiewicz, 0 C, Finite
element euler computations in three dimensions, Int. J. Numer. Met. Eng. Vol. 26
(1988), pp 2135-2159.
[REQ 83] Requicha, A A G and Voelcker, H B, Solid modeling: current status and research
directions, IEEE Comput. Graph. Appl. Vol. 3, W 7 (1983), pp 25-37.
(SAM 84] Samet, H, The quadtree and related hierarchical data stmctures, Computing
Surveys Vol. 16, W 2 (1984), pp 187-260.
(SLU 82] Sluiter, M L C and Hansen, DC, a general purpose automatic mesh generator for
shell and solid finite element, in Hulbert, L E ( ed) Computers in engineering, Vol. 3,
Book W G00217, ASME (1982), pp 29-34.
[WOR 84] Wordenweber, B, Finite element mesh generation, Comput.-Aided Des. Vol. 16,
w 5 (1984), pp 285-291.
[YER 84] Yerry, M A and Shephard, M S, Automatic three-dimensional mesh generation by
the modified-octree technique, Int. J. Nwner. Meth. Eng. Vol. 20, No 11 (1984), pp
-1990.
[ZEI 91] Zeid, I, CAD/CAM, Theory and practice, Me Graw Hill, New York 1991.
[ZIE 91] Zienkiewicz, 0 C, Adaptivity-Fluids-Localisation: The challenge to computational
mechanics, Trans. CSME Vol. 15, No 2, (1991 ).