Application de Ia methode des elements finis aux equations 2-D hyperboliques. Partie I : equation scalaire de convection

Authors

  • Mohamed Boulerhcha Faculte des sciences, departement de physique, BP 1796 Atlas, Fes, Maroc
  • Yves Secretan INRS-Eau, 2800 rue Einstein, CP 7500, Ste-Foy, G1V 4C7 Canada
  • Gouri Dhatt 1NSA-Rouen, departement de mecanique 8, place Emile Bonde!, 76130 Mont-Saint-Aignan
  • Dinh N. Nguyen Universite Laval, departement genie mecanique Pavilion Pouliot, Quebec, G 1 K 7 P4 Canada

Keywords:

convection equation, transport equation, shock waves, finite element method, Lax-Wendroff scheme, fluctuation splitting

Abstract

The principal goal of this papers is the development of numerical models to capture shock waves in compressible flows. In this first part we should only resolve the scalar convection equation. An explicit scheme for time discretization and FEM with linear triangular element for the space discretization should be employed. We have investigated two approaches. The first one, called the LWR method, is a centered sheme while the other one is the Fluctuation Splitting method based on an upwinding scheme. Initiallv, the second method was developed in a Finite Volume context, however we have rewriten it in a FE context by suitable choice of weighted functions. These methods are applied to different 2-D scalar convection equation examples.

 

Downloads

Download data is not yet available.

References

[BDRS92] G. Bourgeois, H. Deconninck, P. L. Roe, and R. Struijs. Multidimensional

upwind schemes for scalar advection on tetrahedral meshes. First European

CFD Conference, Brussels, 1992.

[Bou93] M. Boulerhcha. Ecoulements euleriens par elements finis avec mffinement

de maillage; comparaison d 'un schema centre et de schbnas decentres. PhD

thesis, Universite Laval, Quebec, 1993.

[BSDN95] M. Boulerhcha, Y. Secretan, G. Dhatt, and D. N. Nguyen. Application

de Ia methode des elements finis aux equations 2-D hyperboliques: partie

II: Equations d 'euler en flu ide compressible. Revue europeene des elements

finis, 1995. A paraitre.

[Don84a] J. Donea. Recent advances in computational methods for steady and transient

transport problems. Nuclear Engineering and Design, 80:141-162,

[Don84b] J. Donea. A Taylor-Galerkin method for convective transport problems.

International Journal for Numerical Methods in Engineering, 20:101-119,

[DQ92] J. Donea and L. Quartapelle. An introduction to finite element methods

for transient advection problems. Computer Methods in Applied Mechanics

and Engineering, 95:169-203, 1992.

[DSB+ 92] H. Deconninck, R. Struijs, G. Bourgeois, H. Paillere, and P. L. Roe. Multidimensional

upwind methods for unstructured grids. A CARD R-787, 1992.

[DSR90] H. Deconninck, R. Struijs, and P. L. Roe. Fluctuation splitting for multidimensional

convection problems: an alternative to finite volume and finite

element methods. Von [(arm an Institute for Fluid Dynamics, Lecture

Series1990-03, 1990.

[DT84] G. Dhatt and G. Touzot. Une presentation de la methode des elements finis.

Collection Universite de Compiegne. Maloine S.A., 1984.

[HFM86) T. J. R. Hughes, L. P. Franca, and M. Mallet. A new finite element formulation

for computational fluid dynamics: I Symmetric forms of the compressible

Euler and N a vier-Stokes equations and the second law of thermodynamics.

Computer Methods in Applied Mechanics and Engineering, 54:223-234,

(Joh92] C. Johnson. Finite element methods for flow problems. AGARD Report

AR-787, 1992.

(Lax54] P. D. Lax. Weak solutions of nonlinear hyperbolic equations and their

numerical computation. Comm. Pure and Applied Mathematics, 7:159-193,

(LMZ85] R. Li:ihner, K. Morgan, and 0. C. Zienkiewicz. An adaptive finite element

procedure for compressible high speed flows. Computer Methods in Applied

Mechanics and Engineering, 51:441-465, 1985.

(LW60] P. D. Lax and B. Wendroff. Systems of conservation laws. Comm. Pure and

Applied Mathematics, 13:217-237, 1960.

(Mor85] K. W. Morton. Generalized Galerkin methods for hyperbolic problems.

Computer Methods in Applied Mechanics and Engineering, 52:847-871,

(MP80] K. W. Morton and A. K. Parrott. Generalized Galerkin methods for firstorder

hyperbolic equations. Journal of Computational Physics, 36:249-270,

[PPF+88] J. Peraire, J. Peiro, L. Formaggia, I<. Morgan, and 0. C. Zienkiewicz. Finite

element Euler computations in three dimensions. International Journal for

Numerical Methods in Engineering, pages 2135-2159, 1988.

(RBT90] R. Ramakrishnan, K. S. Bey, and E. A. Thornton. Adaptive quadrilateral

and triangular finite element scheme for compressible flows. AIAA Journal,

:51-59, 1990.

[RM67] R. D. Richtmyer and K. W. Morton. Difference methods for initial value

problems. Willey, 1967.

[Roe82] P. L. Roe. Fluctuations and signals, a framework for numerical evolution

problems. Proceedings of Numerical Methods for Fluid Dynamics I, pages

-257, 1982. Ed. K. W. Morton and M. J. Baines, Academic Press,

Loudon.

[Roe86] P. L. Roe. Discrete models for the numerical analysis of time-dependant

multidimensional gas dynamics. Journal of Computational Physics, 63:458-

, 1986.

(Roe87] P. L. Roe. 'optimum' upwind advection on triangular meshes. Cranfield

Inst. of Techn. Report No 8720, 1987.

(SDP+91] R. Struijs, H. Deconninck, P. De Palma, P. L. Roe, and K. G. Powell.

Progress on multidimensional upwind Euler solvers for unstructured grids.

AIAA 91-1550, 1991.

[SDR91] R. Struijs, H. Deconninck, and P. L. Roe. Fluctuation splitting schemes for

the 2D Euler equations. Von /( ar·man Institute for Fluid Dynamics, Lecture

Ser·ies 1991-01, 1991.

(SED94] A. Soulaimani, N-E. Elkhadir Elyamani, and C. Deschenes. Une methode

d 'elements finis pour le calcul des ecoulements compressibles utilisaut les

variables conservatives et Ia methode SUPG. Revue europeene des elements

finis, 3:211-245, 1994.

[Spe8i)

[Str86)

[WC84)

S. P. Spekreijse. M ultigrid solution of monotone second-order discretisations

of hyperbolic conservation laws. Mathematic of computation, 49:135-155,

i.

G. Strang. Introduction to applied mathematics. Wellesley-Cambridge Press,

P. Woodward and P. Colella. The numerical simulation of two-dimensional

fluid flow with strong shocks. Journal of Computational Physics, 54:115-

li3, 1984.

Downloads

Published

1995-04-23

How to Cite

Boulerhcha, M. ., Secretan, Y. ., Dhatt, G. ., & Nguyen, D. N. . (1995). Application de Ia methode des elements finis aux equations 2-D hyperboliques. Partie I : equation scalaire de convection. European Journal of Computational Mechanics, 4(3), 271–306. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3563

Issue

Section

Original Article