Elastoplastic Finite Element Analysis of Soil Problems with Implicit Standard Material Constitutive Laws
Keywords:
elastoplasticity, soil mechanics, non associated law, limit analysis, finite element methodAbstract
A new class of materials called Implicit Standard Materials is proposed. It allows to generalize Fenchel's inequality, and then to recover flow rule normality, for non-standard materials. We can show that implicit standard materials method describes several behaviours with simpler manner. We apply this approach to soils mechanics in order to build a non-associated constitutive law as the experience suggests. In term of FEM, an algorithm based on Newton's method is proposed. It allows to obtain a symmetric stiffness matrix in reverse to actual non-associated formulation. A bearing capacity problem is considered as numerical application. Some results and theorems are discussed.
Downloads
References
I. EKELAND and R. TEMAN, Analyse convexe et problemes variationnels, Dunod,
Gauthiers-Villars, Paris, 1974.
Z. MROZ, Mathematical models of inelastic material behaviour, University of
Waterloo, 1973.
P. GERMAIN, Mecanique des milieux continus, t.l, Paris, Masson et Cie, 1973.
P.D. PANAGIATOPOULOS, Inequality problems in mechanics and applications, convex
and nonconvex energy functions, Birkhauser, Boston, Basel, Stuttgart, 1985.
G. DE SAXCE, A. BERGA, L. BOUSSHINE, The implicit standard material for non
associated plasticity in soil mechanics, Proc. Int. Congress on Num. Meth. in Eng.
and Appl. Sc., Vol. 1, pp. 585-594, Concepci6n (Chile), 1992.
ZIEGLER, A possible generalization of Onsager's theory, Advances in Solid
Mechanics, Acad. Press, New York, 1962.
A. BERGA, Calcul elastoplastique des sols a lois non associees par eliments finis base
sur /'approche des materiaux standards implicites, These de Doctorat , Universite de
Technologie de Compiegne (France), 1993.
B. HALPHEN and NGUYEN Quoc SoN, Sur les materiaux standard generalises, J. de
Mecanique, 14: 39-63 (1975).
G. DE SAXCE, A generalization of Fenchel's inequality and its applications to the
constitutive laws, Comptes Rendus Acad. Sci. Paris, t. 314, Serle II, pp. 125-129,
J. C. SIMO and R.L. TAYLOR, Consistent tangent operators of rate-independent
elastoplasticity, Camp. Meth. Appl. Mech. Eng., 48 : 101-118 (1985).
DRUCKER, D. C, Limit analysis of two and three-dimensional soil mechanics
problems, J. Mech. Phys. Solids, 1, pp. 217-224 (1953).
G. DE SAXCE, Sur quelques problemes de mecanique des so/ides consideris comme
materiaux a potentiels convexes, These de doctorat, Universite de Liege, 1986.
J. A. RUDNICKI, J. R. RICE, Conditions for the localisation of deformation in
pressure-sensitive dilatant materials, J. Mech. Phys. Solid, Vol. 23, pp. 371-394,
J. J. MOREAU, Proximite et dualite dans un espace hilbertien, Bull. Soc. Math.
France, 93 : 273-299 (1965).
J. J. MOREAU, On unilateral constraints, friction and plasticity, Lecture notes,
CIME, Bressanone, 1973, Cremonese, Roma, 1971.
NGUYEN Quoc SON, On the elastic plastic initial boundary value problem and its
numerical integration, Int. J. Num. Meth. Eng., 11 : 817-832 (1977).
W. F. CHEN, Limit analysis and soil plasticity, Ed. Elsevier, New York, 1975 .
SCHIELD, R. T., On Coulomb's law of failure in soil mechanics, J. Mech. Phys.
Solids, 4, 1, pp. 10-16 (1955).
MROZ, Z., On nonlinear flow laws in the theory of plasticity, Bull. Acad. Pol. Sc.,
Ser. Sci. tech., 12, pp. 531-539 (1965).
Z. MROZ, Non-associated flow laws in plasticity, J. de Mech., 2 : 21-42 (1963).
PALMER, A. C., A limit theorem for materials with non-associated flow laws, J.
Mecanique., 5, 2, pp. 217-222 (1966).
DEJONG, D. J. G., Lower-bound collapse theorem and lack of normality of strain rate
to yield surface for soils, Rheology and Soil Mechanics, IUTAM Symp. Grenoble,
Kravtchenko J. Ed., Springer, Berlin, pp. 69-75 (1966).
W. FENCHEL, On conjugate convex functions, Canad. J. Math, 1 :73-77 (1949).
G. DE SAXCE, The variational inequations for the problem of unilateral contact with
friction, Proc. 2eme Congres National Beige de Mecanique Theorique et Appliquee.
Bruxelles, 17-18 Mai (1990).
G. DE SAXCE, Z. Q. FENG and G. TOUZOT, The implicit standard material approach for
coupled frictional contact, Proc. Colloque Euromech 273, Unilateral contact and dry
friction, La grande Motte (France), 29 Mai-ler Juin (1990).
G. DE SAXCE and Z. Q. FENG, New inequation and functional for contact with friction :
the implicit standard material approach, Mech. of Struct. and Machines, Vol. 19, N°3
(1991).
DAIS, J. L., An isotropic frictional theory for a granular medium with and without
cohesion, Int. J. Solids. Struct., 6, pp. 1185-1191 (1970).
DAIS, J. L., Nonuniqueness of collapse load for a friction material, Int. J. Solid.
Struct., 6, pp. 1315-1319 (1960).
LADEVEZE P., Sur une famille d'algorithmes en mecanique des structures, Comptes
Rendus Acad. Sci. Paris, 300, serie II, n° 2, 41-44 (1985).
LADEVEZE P., La methode a grand increment de temps pour /'analyse de structures a
comportement non lineaire decrit par variables internes, Comptes Rendus Acad. Sci.
Paris, 309, serie II, no 11, 1095-1099 (1989).
LADEVEZE P., New advances in the large time increment method, European
Conference on New advances in Computational structural Mechanics. Giens, April
(1991).
H. F. BARROS, C. M. MARQUES and R. A. F. MARTINS, A symmetric formulation in
non-associated plasticity, Computers & Structures, vol. 38, No. 1, 25-29 (1991 ).
P. V. LADE, J. M. DUNCAN, Elastoplastic stress-strain theory for cohesionless soil,
J. Geotech. Eng. Div., ASCE, 101, GTIO, Proc. Paper 11670, pp. 1037-1053, 1975.
H. MATSVOKA, On the significance on the spatial mobilized plane, Soil and Found.,
, I. Jap. Soc. Soil Mech. Found. Eng., march 1976.
D. C. DRUCKER and W. PRAGER, Soil mechanics and plastic analysis or limit design,
Quarterly J. Appl. Math. 10 July, 157-165, (1952).
H. VAN LANGEN, P. A. VERMER, Automatic step size correction for non-associated
plasticity problems, Int. J. Num. Meth. Eng., Vol. 29, pp. 579-598, 1990.
SoKOLOVSKII, V. V., Statics of granular media. Pergamon Press, New York (1965).
FELLENIUS, W., Mechanics of soils, Statika Gruntov, Gosstrollzdat (1933).
TERZAGHI, K., Theoretical soil mechanics. Wiley, New York (1943).
TAYLOR, D. W., Fundamentals of soil mechanics, Wiley, New York (1948).
CHEN, W. F. and DAVIDSON, H. L., Bearing capacity determination by limit analysis,
J. Soil Mech. Found. Div., ASCE, 99 (SM6) Proc., pp., 9816 :433-449 (1973).
HOEG, K., CHRISTIAN, J. T. and WHITMAN, R. V., Settlement of strip load on elasticplastic
soil, J. Soil Mech. Found. Div., ASCE, 94 (SM2) : 431-445 (1968).
P. D. PANAGIATOPOULOS, Une generalisation non-convexe de Ia notion de surpotentiel
et ses applications, Comptes Rendus Acad. Sci. Paris, t 296, serie II, pp.
, 1983.
TANG, W. H. and HOEG, K., Two-dimensional analysis of stress and strain in soils,
report 5 : plane-strain loading of a strain-hardening soil. U.S. Army Eng. Waterw.
Exp. Stu., Contr. Rep. 3-129 (1968).
HOEG, K., Finite-element analysis of strain-softening clay. J. Soil Mech. Found.
Div., ASCE, 98 (SMl) : 43-58 (1972).
J. COSTET, G. SANGLERAT, Cours pratique de mecanique des sols, 1. plasticite et calcul
des tassements. Dunod, Paris (1981).
SCHOFIELD, A. N. and WROTH, C. P., Critical state soil mechanics, Me Graw-Hill,
New York (1968).
C. A. FELIPA, Stablility of elastic structures, university of Colorado, Boulder (USA),
Report No. CU-CSSC-88-07, part of AGARD lectures on Nonlinear Structural
Analysis to be delivred at LTAS, Liege, Belgium and ONERA, Chatillon, France, June
(1988).
M. A. CRISFIELD, Non-linear Finite Element Analysis of Solids and Structures, John
Wiley, Chichester (1991).
W. C. RHEINBOLDT, H. J. WACKER, Continuation methods, Academic Press, New
York (1978).
H. SCHWETLICK, J. CLEVE, Hight order predictors and adaptive steplength control in
path following, SIAM, J. Num. Anal, Vol. 24 (1987).
Y. LIU, Algorithmes pour la methode des elements finis et pour Ia methode de
continuation, These de Doctorat UTC (1989).
J. PODGORSKI, Limit state condition and the dissipation function for isotropic
materials, Arch. Mech., 36, 3, pp. 323-342, 1984.
J. J. MOREAU, Comptes Rendus Acad. Sci. Paris, 267, serie A, pp. 954, 1968.
NGUYEN DANG HUNG, Sur la plasticite et le calcul des etats limites par elements finis,
These de doctorart special, Universite de Liege, 1984.
D. C. DRUCKER, Coulomb's friction, plasticity and limit loads, J. ASME, Applied
Mech. Division, pp. 71-74, 1953.
J. J. TELEGA, Limit analysis theorems in the case of Signorini's boundary condition
and friction, Arch. Mech., Vol. 37, W 4-5, pp. 549-562, 1985.
G. DE SAXCE, L. BOUSSHINE, On the extension of limit analysis theorems to the non
associated flow rules in soils and to the contact with Coulomb's friction, Proc. XI
Polish conf. on Computer Mech., Kielce-Cedzyna, Poland, Vol II, pp. 815-822,
G. DE SAXCE, L. BouSSHINE, The variational and numerical approach to contact with
dry friction and non associated plasticity of soils : the implicit standard materials,
Proc. 1st. Int. Conf. "contact mechanics 93", Souphanpton (U.-K.), 1993.
W. F. CHEN, X.L. LIU, Limit analysis in soil mechanics, Developments in Geotechnical
Engineering, Vol. 52, Elsevier, 1990.