A Numerical Stability Study on Truss Structures
Keywords:
bifurcation, critical point search, derivative of stiffness, higher order prediction, path-follow algorithm, stability, truss structuresAbstract
This paper, which presents a numerical study on non-linear stability problems of truss structures, concentrates on three main parts. First, the derivative of the tangential stiffness matrix is used to give the stability analysis with direct calculation of the critical points and the branch-switching function. And then a quadratically convergent pathfollowing algorithm is obtained. Compared with the classical arc-length methods, it is more efficient in fast convergence and saving CPU time. Finally it studies four geometrically nonlinear problems in details.
Downloads
References
[AB78) Abbot, J. P., An efficient algorithm for the detennination of certain bifurcation points, J.
Comp. Appl. Math., 4, pp. 19-27, 1978.
[AL89) Allman, D. J., On the general theory of the stability of equilibrium of discrete conservative
systems, A.ero. J., 93, pp. 29-35, 1989.
[BA TH82) Bathe, K. -J., Finite Elem~~nt Procedures in Engineering Analysis, Pentice-Hall Inc.,
Englewood Cliffs, New Jeney 07632, 1982.
[BAT079) Batoz, J. L. and Dhatt, G., Incremental displacement algorithms for non-linear problems,
Int. J. Num. Meth. Eng., 14, pp. 1262-1267, 1979.
[BE78) Bergan, P. G., Horrigmoe, G., Krakeland, B. and Soreide, T. H., Solution techniques for
non-linear finite clement problems, Int. J. Num. Meth. Eng., 12, pp. 1677-1696, 1978.
Bogner, F. K., Analysis of tension structures, Proc. 2nd Conf. Matri:l Methods inStruct.
Mech., Air Force Inst. of Tech., Wright Pauenon A. F. Base, Dayton, Ohio, USA, 1968.
[BR80) Brendel, B. and Ramm, R., Linear and nonlinear stability analysis of cylindrical shells,
Comp. &. Struct., 12, pp. 549-558, 1980.
[CR81) Crisfield, M. A., A fast incremental iterative solution procedure that handles snap-through,
Comp. &: Struct., 13, pp. 55-62, 1981.
[CR86) Crisfield, M. A., New solution procedure for linear and non-linear fmite element analysis,
in The Mathematics of Finite Elements and Applications V (Ed. J. Whitman), Academic
Press, London, 1986.
[CR91) Crisfield, M.A. and Shi, ]., A review of solution procedures and path-following techniques
in relation to the non-linear finite element analysis of structures, in Nonlinear
Computational Mechanics (Ed. P. Wriggers and W. Wagner), Springer-Verlag, BerlinHeidelberg-
New York, pp. 47-68, 1991.
[EC83) Eckstein, U., Nichtlineare Stabilititsberechnung elastischer Schalen-tragwerke, 1WM Nr.
-3, Institut filr Konstruktiven Ingenieutbau, Ruhr-Univenitit Bochum, Gennany, 1983.
[ER91) Eriksson, A., Derivatives of tangential stiffness matrices for equilibrimn path descriptions,
Int. J. Num. Meth. Eng., 32, pp. 1093-1113, 1991.
[FR84) Fried, I., Orthogonal trajectory aecession to the nonlinear equilibrimn curve, Comp. Met h.
Appl. Mec. Eng., 47, pp. 283-297, 1984.
[KQ91) Kritzig, W. B. and Qian, Y. -y., On stability conditions for nonlinear static and dynamic
buckling responses of atbitrary structures, in Nonlinear Computational Mechanics (Ed. P.
Wriggen and W. Wagner), Springer-Verlag, Berlin-Heidelberg-New York, pp. 85-97,
[M080) Moore, G. and Spence, A., The calculation of turning points of nonlinear equations, SIAM
J. Num. Anal., 17, pp. 567-576, 1980.
[MU77) Milller, P. C., Stabilitit und Matrizen, Springer-Verlag, Berlin-Heidelberg-New York,
[RA81) Ramm, E., Strategies for tracing the nonlinear response near limit points, in Nonlinear
Finite Element Analysis in Structural Mechanics (Ed. W. Wunderlich, E. Stein, K. -J.
Bathe), Springer-Verlag, Berlin-Heidelberg-New York, 1981.
[RI72] Riles, E., The application of Newton's method to the problem of elastic stability, J. Appl.
Mech., 39, pp. 1060-1066, 1972.
[RI79] Riles, E., An incremental approach to the solution of snapping and buckling problems, Tnt.
J. Solid & Struct., 15, pp. 529-551, 1979.
[Rl84] Riles, E., Some computational aspects of the stability analysis of nonlinear structures,
Camp. Meth. Appl. Mech. Eng., 47, pp. 219-259, 1984.
[SE79) Seydel, R., Numerical computation of branch points in nonlinear equations, Num. Math.,
, pp. 339-352, 1979.
[SP85] Spence, A. and Jepson, A. D., Folds in the solution of two parameter systems and their
calculation. Part I, SlAM J. Numer. Anal., 22, pp. 347-368, 1985.
[TH73] Thompson, J. M. T. and Hunt, G. W. A General Theory of Elastic Stability, Wiley,
London, 1973.
[WA88] Wagner, W., and P. Wriggers, A simple method for the calculation of poatcritical
branches, Eng. Compul., S, pp. 103-109, 1988.
[WA91] Wagner, W., A path-following algorithm with quadratic predictor, Camp. & Struct., 39,
pp. 339-348, 1991.
[WEM71] Wempner, G. A., Discrete approximations related to nonlinear theories of solids, Tnt. J.
Solids Struct., 7, pp. 1581-1599, 1971.
[WER84] Werner, B. and Spence, A., The computation of symmetry-breaking bifurcation points,
SlAM J. Num. Anal., 21, pp. 388-399, 1984.
[WR88] Wriggers, P., Wagner, W. and Miehe, C., A quadratically convergent procedure for the
calculation of stability points in fmite element analysis, Camp. Meth. Appl. Mech. Engng.,
, pp. 329-347, 1988.
[WR90] Wriggers, P. and Simo, I. C., A general procedure for the direct computation of turning
and bifurcation points, Int. J. Num. Met h. Eng., 30, pp. 155-176, 1990.
[ZI88] Zienkiewicz, 0. C. and Taylor, R. L., The Finite Element Method, McGraw-Hill, London,