Cancer Vaccines: Bench to Bedside
DOI:
https://doi.org/10.13052/ijts2246-8765.2016.003Keywords:
cancer vaccines, peptide epitopes, vaccinia virus – antigen retrievalAbstract
The immune system has immense potential in cancer therapy as it is individualized, precision driven and robust, however, it is associated with challenges of its own that include immune evasion, development of tolerance and a sustained tumor rejection response. Recent FDA approval of several checkpoint inhibitors, anti-CTLA4, anti-PD-1, has re-invigorated cancer immunology by demonstrating that tolerance to cancer can be broken to induce a sustained immune response in patients. Active immunization with multivalent tumor associated antigens (TAA), however, is still a challenge. We have developed two specific distinct methods to generate multivalent antigens capable of tumor regression in prostate cancer and melanoma. In prostate cancer, we have generated specific multivalent peptide mimetics using phage display synthetic peptide libraries capable of metastatic tumor regression in an animal model. In melanoma, we have used a vaccinia virus based antigen retrieval technology to generate a multivalent antigenic vaccine. The antigenic repertoire is well defined. A protocol for the melanoma vaccine is FDA approved for clinical trials. We envision defining the humoral and cellular immune response to combine our active vaccine strategy with other treatment modalities including approved checkpoint inhibitors anti-CTLA4 and anti-PD-1. We believe our vaccine candidates are a new generation of immune-therapeutics that can prolong cancer free survival and prevent secondary recurrences. Our studies have challenged the existing paradigms to re-define cancer immunotherapy that bridges the gap between humoral and cellular immunity by combining active immune response with negative checkpoint inhibitors thus activating pre-existing dormant immune response.
Downloads
References
Baldwin, R. W. (1955). Immunity to methylcholanthrene-induced tumours in inbred rats following atrophy and regression of the implanted tumours. Br. J. Cancer 9, 652–657.
Foley, E. J. (1953). Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res. 13, 835–837.
Prehn, R. T., and Main, J. M. (1957). Immunity to methylcholanthrene-induced sarcomas. J. Natl. Cancer Inst. 18, 769–778.
Klein, G., Sjogren, H. O., Klein, E., and Hellstrom, K. E. (1960). Demonstration of resistance against methylcholanthrene-induced sarcomas. Cancer Res. 20, 1561–1572.
Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature 446, 153–158.
Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674.
Schumacher, T. N., and Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science 348, 69–74.
Coulie, P. G., Lehmann, F., Lethé, B., Herman, J., et al. (1995). A mutated intron sequence codes for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma. Proc. Natl. Acad. Sci. U.S.A. 92, 7976–7980.
Baldwin, R. W. (1955). Immunity to transplanted tumour: the effect of tumour extracts on the growth of homologous tumours in rats. Br. J. Cancer 9, 646–651.
Srivastava, P. (2002). Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol. 20, 395–425.
Suto, R., and Srivastava, P. K. (1995). A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269, 1585–1588.
Binder, R. J., Han, D. K., and Srivastava, P. K. (2000). CD91: a receptor for heat shock protein gp96. Nat. Immunol. 1, 151–155.
Schlesinger, M. J. (1990). Heat Shock Proteins: minireview. J. Biol. Chem. 265, 12111–12114.
Udono, H., and Srivastava, P. K. (1993). Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med. 178, 1391–1396.
Calderwood, S. K., Stevenson, M. A., and Murshid, A. (2012). Heat shock proteins, autoimmunity, and cancer treatment. Autoimmune Dis. 2012:486069.
Bunting, S. F., and Nussenzweig, A. (2013). End-joining, translocations and cancer. Nat. Rev. Cancer 13, 443–454.
Srivastava, P. K. (2015). Neoepitopes of cancers: looking back, looking ahead. Cancer Immunol. Res. 3, 969–977.
Suriano, R., Rajoria, S., George, A. L., Geliebter, J., et al. (2013). Ex vivo derived primary melanoma cells: implications for immunotherapeutic vaccines. J. Cancer 4, 371–382.
Suriano, R., Rajoria, S., George, A., Jussim, C., et al. (2012). Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research: multivalent melanoma vaccine using primary human melanoma cells and a vaccinia virus based antigen retrieval system. Cancer Res. 72, 1569.
Wallack, M. K., McNally, K. R., Leftheriotis, E., Seigler, H., et al. (1986). A Southeastern Cancer Study Group phase I/II trial with vaccinia melanoma oncolysates. Cancer 57, 649–655.
Wallack, M. K., Meyer, M., Bourgoin, A., Doré, J. F., et al. (1983). A preliminary trial of vaccinia oncolysates in the treatment of recurrent melanoma with serologic responses to the treatment. J. Biol. Response Mod. 2, 586–596.
George, A. L., Suriano, R., Rajoria, S., Osso, M. C., et al. (2015). PLX4032 mediated melanoma associated antigen potentiation in patient derived primary melanoma cells. J. Cancer 6, 1320–1330.
Suriano, R., Tuli, N. Y., Geliebter, J., Tiwari, R. K., et al. (2015). Proceedings of the 106thAnnual Meeting of theAmericanAssociation for Cancer Research: novel targeted combinational therapies for melanoma. Cancer Res. 75, 3540.
Larché, M. (2008). Determining MHC restriction of T-cell responses. Methods Mol. Med. 138, 57–72.
Khanna, R. (1998). Tumour surveillance: missing peptides and MHC molecules. Immunol. Cell Biol. 76, 20–26.
Nishida, S., Koido, S., Takeda, Y., Homma, S., Komita, H., Takahara,A., et al. (2014). Wilms tumor gene (WT1) peptide-based cancer vaccine combined with gemcitabine for patients with advanced pancreatic cancer.J. Immunother. 37, 105–114.
Mittendorf, E. A., Clifton, G. T., Holmes, J. P., Schneble, E., et al. (2014). Final report of the phase I/II clinical trial of the E75 (nelipepimut-S) vaccine with booster inoculations to prevent disease recurrence in high-risk breast cancer patients. Ann. Oncol. 25, 1735–1742.
Kotsakis, A., Papadimitraki, E., Vetsika, E. K., Aggouraki, D., et al. (2014). A phase II trial evaluating the clinical and immunologic response of HLA-A2(+) non-small cell lung cancer patients vaccinated with an hTERT cryptic peptide. Lung Cancer 86, 59–66.
Jack, A. M., Aydin, N., Montenegro, G., Alam, K., et al. (2007). A novel dendritic cell-based cancer vaccine produces promising results in a syngenic CC-36 murine colon adenocarcinoma model. J. Surg. Res. 139, 164–169.
Aydin, N., Jack, A., Montenegro, G., Boyes, C., et al. (2006). Expression of melanoma-associated antigens in human dendritic cells pulsed with an interleukin-2 gene encoded vaccinia melanoma oncolysate (rIL-2VMO). Cancer Biol. Ther. 5, 1654–1657.
Suriano, R., Rajoria, S., George, A. L., Geliebter, J., et al. (2013). Follow-up analysis of a randomized phase III immunotherapeutic clinical trial on melanoma. Mol. Clin. Oncol. 1, 466–472.
Grotz, T. E., Kottschade, L., Pavey, E. S., Markovic, S. N., et al. (2014). Adjuvant GM-CSF improves survival in high-risk stage iiic melanoma: a single-center Study. Am. J. Clin. Oncol. 37, 467–472.
Faries, M. B., Hsueh, E. C., Ye, X., Hoban, M., et al. (2009). Effect of granulocyte/macrophage colony-stimulating factor on vaccination with an allogeneic whole-cell melanoma vaccine. Clin. Cancer Res. 15, 7029–7035.
Slingluff, C. L., Petroni, G. R., Yamshchikov, G. V., Hibbitts, S., et al. (2004). Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J. Clin. Oncol. 22, 4474–4485.
Slingluff, C. L., Petroni, G. R., Olson, W. C., Smolkin, M. E., et al. (2009). Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin. Cancer Res. 15, 7036–7044.
Overwijk, W. W., Theoret, M. R., and Restifo, N. P. (2000). The future of interleukin-2: enhancing therapeutic anticancer vaccines. Cancer J. Sci. Am. 6(Suppl. 1), S76–S80.
Rosenberg, S. A., Lotze, M. T., Yang, J. C., Aebersold, P. M., et al. (1989). Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann. Surg. 210, 474–485.
Fifis, T., Gamvrellis, A., Crimeen-Irwin, B., Pietersz, G. A., et al. (2004). Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol. 173, 3148–3154.
Jeanbart, L., Ballester, M., de Titta,A., Corthésy, P., et al. (2014). Enhancing efficacy of anticancer vaccines by targeted delivery to tumor-draining lymph nodes. Cancer Immunol. Res. 2, 436–447.
Fang, R. H., Hu, C. M., Luk, B. T., Gao, W., et al. (2014). Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery. Nano Lett. 14, 2181–2188.
Liu, H., Moynihan, K. D., Zheng, Y., Szeto, G. L., et al. (2014). Structure-based programming of lymph-node targeting in molecular vaccines. Nature 507, 519–522.
Gattinoni, L., Klebanoff, C. A., Palmer, D. C., Wrzesinski, C., et al. (2005).Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells.J. Clin. Invest. 115, 1616–1626.
Gajewski, T. F., Schreiber, H., and Fu, Y.-X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 14, 1014–1022.
Walunas, T. L., Bakker, C. Y., and Bluestone, J. A. (1996). CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550.
McCoy, K. D., and Le Gros, G. (1999). The role of CTLA-4 in the regulation of T cell immune responses. Immunol. Cell Biol. 77, 1–10.
Jin, H.-T., Ahmed, R., and Okazaki, T. (2011). Role of PD-1 in regulating T-cell immunity. Curr. Top. Microbiol. Immunol. 350, 17–37.
Wolchok, J. D., Kluger, H., Callahan, M. K., Postow, M. A., et al. (2013). Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133.
Hoos, A., Ibrahim, R., Korman, A., Abdallah, K., et al. (2010). Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy. Semin. Oncol. 37, 533–546.
Hodi, F. S., O’Day, S. J., McDermott, D. F., Weber, R. W., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723.
Brahmer, J. R., Drake, C. G., Wollner, I., Powderly, J. D., et al. (2010). Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175.
Azmat, U., Liebner, D., Joehlin-Price, A., Agrawal, A., et al. (2016). Treatment of ipilimumab induced graves’ disease in a patient with metastatic melanoma. Case Rep. Endocrinol. 2016, 2087525. doi:10.1155/2016/2087525.
Mailleux, M., Cornélis, F., Colin, G., and Baurain, J. F. (2015). Unusual pulmonary toxicity of ipilimumab treated by macrolides. Acta Clin. Belg. doi: 10.1179/2295333715Y.0000000047 [Epub ahead of print].
Verschuren, E. C., van den Eertwegh, A. J., Wonders, J., Slangen, R.M., et al. (2015). Clinical, endoscopic, and histologic characteristics of ipilimumab-associated colitis. Clin. Gastroenterol. Hepatol. doi:10.1016/j.cgh.2015.12.028 [Epub ahead of print].
Horvat, T. Z.,Adel, N. G., Dang, T. O., Momtaz, P., et al. (2015). Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center.J. Clin. Oncol. 33, 3193–3198.
Chaudhuri, D., Suriano, R., Mittelman, A., and Tiwari, R. K. (2009). Targeting the immune system in cancer. Curr. Pharm. Biotechnol. 10, 166–184.
Shanmugam, A., Suriano, R., Goswami, N., Chaudhuri, D., et al. (2011). Identification of peptide mimotopes of gp96 using single-chain antibody library. Cell Stress Chaperones 16, 225–234.
Shanmugam, A., Suriano, R., Chaudhuri, D., Rajoria, S., et al. (2011). Identification of PSA peptide mimotopes using phage display peptide library. Peptides 32, 1097–1102.