Noise-Resilient Neural Network-Based Adversarial Attack Modeling for XOR Physical Unclonable Functions
DOI:
https://doi.org/10.13052/jcsm2245-1439.926Keywords:
Authentication, Internet of Things, Physical Unclonable Functions, Hardware Security, Neural NetworksAbstract
Authentication plays an essential role in preventing unauthorized access to data and resources on the Internet of Things. Classical security mechanisms fall short of achieving security requirements against many physical attacks due to the resource-constraint nature of IoT devices. Physical Unclonable Functions (PUFs) have been successfully used for lightweight security applications such as devices authentication and secret key generation. PUFs utilize the inevitable variation of integrated circuits during the fabrication process to produce unique responses for individual PUF, hence not reproducible even by the manufacturer itself. However, PUFs are mathematically cloneable by machine learning-based methods. XOR arbiter PUFs are one group of PUFs that can withstand existing attack methods unless exceedingly long training time and large dataset size are applied. In this paper, large-sized XOR PUFs with 64-bit and 128-bit challenges were efficiently and effectively attacked using a carefully engineered neural network-based method. Our fine-tuned neural network-based adversarial models achieve 99% prediction accuracy on noise-free datasets and as low as 96% prediction accuracy on noisy datasets, using up to 55% smaller dataset size compared to existing works known to us. Revealing such vulnerabilities is essential for PUF developers to re-evaluate existing PUF designs, hence avoiding potential risks for IoT devices.
Downloads
References
Yousra Alkabani, Farinaz Koushanfar, Negar Kiyavash, and Miodrag
Potkonjak. Trusted integrated circuits: A nondestructive hidden characteristics
extraction approach. In International Workshop on Information
Hiding, pages 102–117. Springer, 2008.
Mohammed Saeed Alkatheiri and Yu Zhuang. Towards fast and accurate
machine learning attacks of feed-forward arbiter pufs. In Dependable
and Secure Computing, 2017 IEEE Conference on, pages 181–187.
IEEE, 2017.
Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Francois-
Xavier Standaert, and Christian Wachsmann. A formalization of the
security features of physical functions. In 2011 IEEE Symposium on
Security and Privacy, pages 397–412. IEEE, 2011.
Ahmad O. Aseeri, Yu Zhuang, and Mohammed Saeed Alkatheiri. A
machine learning-based security vulnerability study on xor pufs for
resource-constraint internet of things. In 2018 IEEE International
Congress on Internet of Things (ICIOT), pages 49–56. IEEE, 2018.
Georg T. Becker. The gap between promise and reality: On the insecurity
of xor arbiter pufs. In International Workshop on Cryptographic
Hardware and Embedded Systems, pages 535–555. Springer, 2015.
Urbi Chatterjee, Rajat Subhra Chakraborty, Hitesh Kapoor, and Debdeep
Mukhopadhyay. Theory and application of delay constraints
in arbiter puf. ACM Transactions on Embedded Computing Systems
(TECS), 15(1):10, 2016.
Franc¸ois Chollet et al. Keras, 2015.
John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
Machine Learning Research, 12(Jul):2121–2159, 2011.
Jean-Pierre Seifert Fatemeh Ganji, and Shahin Tajik. A fourier analysis
based attack against physically unclonable functions. Springer, 2018.
Fatemeh Ganji, Shahin Tajik, and Jean-Pierre Seifert. Why attackers
win: on the learnability of xor arbiter pufs. In International Conference
on Trust and Trustworthy Computing, pages 22–39. Springer, 2015.
Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas
Devadas. Silicon physical random functions. In Proceedings of the
th ACM Conference on Computer and Communications Security, pages
–160. ACM, 2002.
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving
deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1026–1034, 2015.
Charles Herder, Meng-Day Yu, Farinaz Koushanfar, and Srinivas
Devadas. Physical unclonable functions and applications: A tutorial.
Proceedings of the IEEE, 102(8):1126–1141, 2014.
Jack Kiefer, Jacob Wolfowitz, et al. Stochastic estimation of the maximum
of a regression function. The Annals of Mathematical Statistics,
(3):462–466, 1952.
Diederik Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.
Oluwasanmi O. Koyejo, Nagarajan Natarajan, Pradeep K. Ravikumar,
and Inderjit S. Dhillon. Consistent binary classification with generalized
performance metrics. In Advances in Neural Information Processing
Systems, pages 2744–2752, 2014.
Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh, Marten
Van Dijk, and Srinivas Devadas. Extracting secret keys from integrated
circuits. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 13(10):1200–1205, 2005.
Keith Lofstrom,W. Robert Daasch, and Donald Taylor. Ic identification
circuit using device mismatch. In 2000 IEEE International Solid-State
Circuits Conference. Digest of Technical Papers (Cat. No. 00CH37056),
pages 372–373. IEEE, 2000.
Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld.
Physical one-way functions. Science, 297(5589):2026–2030, 2002.
Ulrich Ruhrmair and Daniel E Holcomb. Pufs at a glance. In Design,
Automation and Test in Europe Conference and Exhibition (DATE),
, pages 1–6. IEEE, 2014.
Ulrich R¨uhrmair, Frank Sehnke, Jan S¨olter, Gideon Dror, Srinivas
Devadas, and J¨urgen Schmidhuber. Modeling attacks on physical
unclonable functions. In Proceedings of the 17th ACM Conference on
Computer and Communications Security, pages 237–249. ACM, 2010.
Sergei Petrovich Skorobogatov. Semi-invasive Attacks: A New Approach
to Hardware Security Analysis. PhD thesis, University of Cambridge
Ph. D. dissertation, 2005.
Ashish Srivastava, Dennis Sylvester, and David Blaauw. Statistical
Analysis and Optimization for VLSI: Timing and Power. Springer
Science & Business Media, 2006.
Suh G. Edward and Srinivas Devadas. Physical unclonable functions for
device authentication and secret key generation. In Proceedings of the
th Annual Design Automation Conference, pages 9–14. ACM, 2007.
Johannes Tobisch and Georg T. Becker. On the scaling of machine
learning attacks on pufs with application to noise bifurcation. In International
Workshop on Radio Frequency Identification: Security and
Privacy Issues, pages 17–31. Springer, 2015.
Sying-Jyan Wang, Yu-Shen Chen, and Katherine Shu-Min Li. Adversarial
attack against modeling attack on pufs. In Proceedings of the 56th
Annual Design Automation Conference 2019, page 138. ACM, 2019.
Xiaoxiao Wang and Mohammad Tehranipoor. Novel physical unclonable
function with process and environmental variations. In 2010
Design, Automation & Test in Europe Conference & Exhibition (DATE
, pages 1065–1070. IEEE, 2010.
Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution,
low noise, l3 cache side-channel attack. In USENIX Security
Symposium, pages 719–732, 2014.
Meng-Day Yu, David M’Ra¨ıhi, Ingrid Verbauwhede, and Srinivas
Devadas. A noise bifurcation architecture for linear additive physical
functions. In 2014 IEEE International Symposium on Hardware-
Oriented Security and Trust (HOST), pages 124–129, May 2014.