Random Number Generators Based on EEG Non-linear and Chaotic Characteristics
DOI:
https://doi.org/10.13052/2245-1439.634Keywords:
Random number generator, EEG, NIST Test Suite, Security, CryptographyAbstract
Current electroencephalogram (EEG)-based methods in security have been mainly used for person authentication and identification purposes only. The non-linear and chaotic characteristics of EEG signal have not been taken into account. In this paper, we propose a new method that explores the use of these EEG characteristics in generating random numbers. EEG signal and its wavebands are transformed into bit sequences that are used as random number sequences or as seeds for pseudo-random number generators. EEG signal has the following advantages: 1) it is noisy, complex, chaotic and non-linear in nature, 2) it is very difficult to mimic because similar mental tasks are person dependent, and 3) it is almost impossible to steal because the brain activity is sensitive to the stress and the mood of the person and an aggressor cannot force the person to reproduce his/her mental pass-phrase. Our experiments were conducted on the four EEG datasets: AEEG, Alcoholism, DEAP and GrazA 2008. The randomness of the generated bit sequences was tested at a high level of significance by comprehensive battery of tests recommended by the National Institute of Standard and Technology (NIST) to verify the quality of random number generators, especially in cryptography application. Our experimental results showed high average success rates for all wavebands and the highest rate is 99.17% for the gamma band.
Downloads
References
Acharya, U. R., Sree, S. V., Ang, P. C. A., Yanti, R., and Suri, J. S. (2012). Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int. J. Neur. Syst. 22, 1250002.
Adeli, H., Ghosh-Dastidar, S., and Dadmehr, N. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering, 54, 205–211. doi: 10.1109/TBME.2006.886855
Al-Fahoum, A. S., and Al-Fraihat, A. A. (2014). Methods of EEG signal features extraction using linear analysis in frequency and time-frequency domains. ISRN Neuroscience. http://dx.doi.org/10.1155/2014/730218
Allison, B. (2011). Trends in BCI research: progress today, backlash tomorrow?. XRDS: Crossroads, The ACM Magazine for Students, 18, 18–22. doi: 10.1145/2000775.2000784
Anderson, C. W., Stolz, E. A., and Shamsunder, S. (1998). Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks. IEEE Transactions on Biomedical Engineering, 45, 277–286. doi: 10.1109/10.661153
Begleiter, H. (1999). EEG alcoholism database. Available at: https://kdd.ics.uci.edu/databases/eeg/eeg.data.html
Bennett, C. H., and Brassard, G. (2014). Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11.
Blum, L., Blum, M., and Shub, M. (1986). A simple unpredictable pseudo-random number generator. SIAM J. Computing, 15, 364–383..
Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., and Pfurtscheller, G. (2008). BCI Competition 2008–Graz data set A. Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of Technology, 136–142.
Chen, G. (2014). Are electroencephalogram (EEG) signals pseudo-random number generators?. J. Comput Appl. Math. 268, 1–4.
Click, T. H., Liu, A., and Kaminski, G. A. (2011). Quality of random number generators significantly affects results of Monte Carlo simulations for organic and biological systems. J. Comput. Chem. 32, 513–524.
Dorrendorf, L., Gutterman, Z., and Pinkas, B. (2009). Cryptanalysis of the random number generator of the windows operating system. ACM Transactions on Information and System Security (TISSEC), 13, 10.
Ferrenberg, A. M., Landau, D. P., and Wong, Y. J. (1992). Monte carlo simulations: Hidden errors from “good” random number generators. Phy. Rev. Lett. 69, 3382.
Garrett, D., Peterson, D. A., Anderson, C. W., and Thaut, M. H. (2003). Comparison of linear, non-linear, and feature selection methods for EEG signal classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11, 141–144.
Gerguri, S. (2008). Biometrics Used for Random Number Generation (Doctoral dissertation, Masarykova univerzita, Fakulta informatiky).
Hartung, D., Wold, K., Graffi, K., and Petrovic, S. (2011). Towards a biometric random number generator – a general approach for true random extraction from biometric samples.
Hunter, M. R. L. L., Smith, R. L., Hyslop, W., Rosso, O. A., Gerlach, R., Rostas, J. A. P., and Henskens, F. et al. (2005). The australian eeg database. Clinical EEG and neuroscience, 36(2), 76–81.
Jonsson, P. (2011). Boom in Internet gambling ahead? US policy reversal clears the way.
Koelstra, S., Muhl, C., Soleymani, M., Lee, J. S., Yazdani, A., Ebrahimi, T., and Patras, I. et al. (2012). Deap: A database for emotion analysis; using physiological signals. IEEE Transactions on Affective Computing, 3, 18–31.
Marcel, S., and Millán, J. D. R. (2007). Person authentication using brainwaves (EEG) and maximum a posteriori model adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 743–752.
Marton, K., and Suciu, A. (2015). On the interpretation of results from the NIST statistical test suite. Romanian J. Inf. Sci. Technol. 18, 18–32. http://www.imt.ro/romjist/Volum18/Number18_1/pdf/02-MSys.pdf
Matyáš, V., and Říha, Z. (2010). Security of biometric authentication systems. In International Conference on Computer Information Systems and Industrial Management Applications (CISIM), pp. 19–28. IEEE.
Micali, S. and Schnorr, C. (1990) Pseudo-Random Sequence Generator, July 24 1990. US Patent 4,944,009.
Ochoa, J. B. (2002). Eeg signal classification for brain computer interface applications. Ecole Polytechnique Federale De Lausanne, 7, 1–72. Available at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.134. 6148&rep=rep1&type=pdf
O’Regan, S., Faul, S., and Marnane, W. (2010). Automatic detection of EEG artefacts arising from head movements. In International Conference of Engineering in Medicine and Biology Society (EMBC), pp. 6353–6356. IEEE.
Petchlert, B., and Hasegawa, H. (2014). Using a low-cost electroencephalogram (EEG) directly as random number generator. In International Conference of Advanced Applied Informatics (IIAIAAI), pp. 470–474. IEEE.
Petchlert, B., and Hasegawa, H. (2014). Using a low-cost electroencephalogram (EEG) directly as random number generator. In International Conference of Advanced Applied Informatics (IIAIAAI), pp. 470–474. IEEE.
Pijn, J. P., Van Neerven, J., Noest, A., and da Silva, F. H. L. (1991). Chaos or noise in EEG signals; dependence on state and brain site. Electroencephalography and clinical Neurophysiology, 79, 371–381.
Rodríguez-Bermúdez, G., and García-Laencina, P. J. (2015).Analysis of eeg signals using non-linear dynamics and chaos: a review. Appl. Math. Inf. Sci. 9, 2309.
Rukhin, A., Soto, J., Nechvatal, J., Barker, E., Leigh, S., Levenson, M., and Smid, M. et al. (2010). Statistical test suite for random and pseudorandom number generators for cryptographic applications, NIST special publication.
Sanei, S., and Chambers, J. A. (2013). EEG Signal Processing. John Wiley & Sons.
Sidorenko, A., and Schoenmakers, B. (2005). State Recovery Attacks on Pseudorandom Generators. WEWoRC, pp. 53–63.
Stam, C. J. (2005). Non-Linear dynamical analysis of EEG and MEG: review of an emerging field. Clin. Neurophysiology 116, 2266–2301.
Stipcevic, M. (2014). Preventing detector blinding attack and other random number generator attacks on quantum cryptography by use of an explicit random number generator. arXiv preprint arXiv:1403.0143.
Szczepanski, J., Wajnryb, E., Amigó, J. M., Sanchez-Vives, M. V., and Slater, M. (2004). Biometric random number generators. Comput. Security 23, 77–84.
Tong, S., and Thakor, N. V. (2009). Quantitative EEG Analysis Methods and Clinical Applications. Artech House.
Vespa, P. M., Nenov, V., and Nuwer, M. R. (1999). Continuous EEG monitoring in the intensive care unit: early findings and clinical efficacy. J. Clin. Neurophysiology 16, 1–13.
Wright, J. J., Kydd, R. R., and Liley, D. T. J. (1993). EEG models: Chaotic and linear. Psycoloquy, 4.
Ying, L., Shu, W., Jing, Y., and Xiao, L. (2010, December). Design of a Random Number Generator from Fingerprint. In International Conference of Computational and Information Sciences (ICCIS), pp. 278–280. IEEE.