A Secured MANET Using Multicast Routing Protocols and Semi Markov Process
DOI:
https://doi.org/10.13052/2245-1439.715Keywords:
MANET, NSMP, Markov ProcessAbstract
Reliable data delivery is essential in the mobile ad hoc network (MANET) and the devices change their positions very frequently since they do not have any fixed infrastructure. In this paper, we have proposed multicast routing protocols for military communications. The military communications with MANET require data security. We using one of the most widely used algorithms Neighbor supporting Ad hoc Multicast routing protocol which is Mesh-based routing algorithm. Semi Markov process is used to develop the node behavior model for network survivability. In this work, reliable data delivery is obtained for the MANET by estimating the present performance of the network through isolating the forwarder node in Semi Markov process.
Downloads
References
Durkadevi, K., Maragatharajan, M., and Balakannan, S. P. (2014). “Reliable Data Delivery for highly Dynamic MANETs Using Adaptive Demand Driven Multicast Routing Protocol (ADMR),” International Journal of Advanced Research in Computer Science & Technology (IJARCST 2014), 2(1).
Thanikaivel, B., and Pranisa, B. (2012). Fast and secure data transmission in MANET. In International Conference on Computer Communication and Informatics (ICCCI), 1–5.
Curtmola, R., and Nita-Rotaru, C. (2009). BSMR: Byzantine-resilient secure multicast routing in multihop wireless networks. IEEE Transactions on Mobile Computing, 8(4), 445–459.
Halvardsson, M., and Lindberg, P. (2004). Reliable group communication in a military Mobile Ad hoc Network. reports from MSI, School of Mathematics and Systems Engineering, Vaxjo University.
Xing, F., and Wang, W. (2010). On the survivability of wireless ad hoc networks with node misbehaviors and failures. IEEE Transactions on Dependable and Secure Computing, 7(3), 284–299.
Lee, S., and Kim, C. (2000). Neighbor supporting ad hoc multicast routing protocol. In Proceedings of the 1st ACM international symposium on Mobile ad hoc networking & computing, 37–44.
Jia, W. K., Chen, C. Y., and Chen, Y. C. (2014). ALEX: an arithmetic-based unified unicast and multicast routing for MANETs. In Wireless Communications and Networking Conference (WCNC), 2114–2119.
Butty, N. L., and Hubaux, J. P. (2003). Stimulating cooperation in self-organizing mobile ad hoc networks. Mobile Networks and Applications, 8(5), 579–592.
Rayner de Melo Pires, Sergio Zumpano Arnosti, and Alex Sandro Roschildt Pinto (2016) “Experimenting Broadcast Storm Mitigation Techniques in MANETs”, In Proceedings of the 49th Hawaii International Conference on System Sciences (HICSS), 5868–5877.
Paul, K., Roychoudhuri, R., and Bandyopadhyay, S. (2000). Survivability analysis of ad hoc wireless network architecture. In Mobile and Wireless Communications Networks, 31–46. Springer: Berlin, Heidelberg.
Mannie, E., and Papadimitriou, D. (2006). Recovery (protection and restoration) terminology for generalized multi-protocol label switching (GMPLS). IETF RFC 4427. Available at: http://www.ietf.org/rfc/ rfc4427.txt
Li, X. Y., Wan, P. J., Wang, Y., and Yi, C. W. (2003). Fault tolerant deployment and topology control in wireless networks. In Proceedings of the 4th ACM International Symposium on Mobile ad hoc Networking & Computing, 117–128.
Bettstetter, C. (2002). On the minimum node degree and connectivity of a wireless multihop network. In Proceedings of the 3rd ACM International Symposium on Mobile ad hoc Networking & Computing, 80–91.
Caballero-Gil, P., Molina-Gil, J., Hernndez-Goya, C., and Caballero-Gil, C. (2009). Stimulating cooperation in self-organized vehicular networks. In 15th Asia-Pacific Conference on Communications, 346–349.