Fuzzy Based Predication Technique for Diabetics Association Analysis for Salem District Farmers

Authors

  • A. Dalvin Vinoth Kumar Assistant Professor, Department of Computer Applications, Dayananda Sagar University, Bengaluru, India

DOI:

https://doi.org/10.13052/jicts2245-800X.1024

Keywords:

Data mining, Classification, predication, fuzzy preprocessing

Abstract

Diabetes is a one of the major issue that all people in the world currently face. Diabetes is caused by excessive amounts of sugar in the blood. Once diabetes is diagnosed, it is not completely curable, but it can be controlled with proper medication, exercise and a balanced diet. Diabetes affects the vital organs of the body such as the heart, kidneys, brain and eyes. The diabetes mellitus and its complications can be determined using a variety of pathological tests, such as patients’ symptoms and blood sugar, urine and lipid profile. The use of fuzzy logic in diagnosis is very common and useful because it combines the knowledge and experience of the physician into ambiguous sets and rules. Most of the researchers proposed methods to diagnosis the diabetes mellitus but still it in their infancy level. This work proposed a fuzzy based system for diagnosing diabetes disease. The usage of pesticides in agriculture by farmers is treated as one of the dependent variable for predication. The empirical zif’s law is used to compute the frequency of farmers using pesticides are predicated as diabetic. The output of the proposed system proved that the fuzzy based prediction model diagnosis the disease accurately.

Downloads

Download data is not yet available.

Author Biography

A. Dalvin Vinoth Kumar, Assistant Professor, Department of Computer Applications, Dayananda Sagar University, Bengaluru, India

A. Dalvin Vinoth Kumar, Assistant Professor, Dept. of Computer Applications, Dayananda Sagar University Bengaluru, has 4 years of Teaching and 7 years of research experience. He pursued his Ph.D. in IoT and obtained Ph.D., Degree from Bharathidasan University. His areas of interest include MANET, IoT, Routing Protocols, Computer Vision and IoT Data Analytics. He filed 3 Indian Patents and 1 computer software copyright granted. He has published 35 research papers in various reputed National & International Journals and published research Papers in National & International conferences. He presented 22 papers in various National & International conferences. He also delivered 40 Lectures in Conferences/Seminars/Workshops/Webinars. He is, Active member and review Member in national and International bodies like Internet of Things Community, IEEE. He received BEST Innovator Award from CIYF and Ministry of Youth Affairs Government of India. He also Received Best researcher in Science Award from St. Joseph College. He was participated in Swachhathon 1.0 conducted by Ministry of Drinking Water and Sanitation Government of India. He presented and received Top poster Award, a poster Entitled “Health Monitoring of Rural Pregnant Women using IoT” in Indian International Science Feast conducted by DST Govt. of India. He has presented a paper in an ACM International at Singapore. He was also the recipient of 5 best paper awards.

References

Zimmet, Paul, K. George Alberti, Dianna J. Magliano, and Peter H. Bennett, “Diabetes mellitus statistics on prevalence and mortality: facts and fallacies”, Nature Reviews Endocrinology 12, Issue. 10, 2016.

Gojka Roglic, Diabetes, Mar 2020, Accessed on: Mar. 15, 2020. [Online] Available: https://www.who.int/diabetes/en/

Katsarou, Anastasia, Soffia Gudbjörnsdottir, ArazRawshani, Dana Dabelea, EzioBonifacio, Barbara J. Anderson, Laura M. Jacobsen, Desmond A. Schatz, and ÅkeLernmark. “Type 1 diabetes mellitus.” Nature reviews Disease primers 3, 2017.

DeFronzo, Ralph A., EleFerrannini, Leif Groop, Robert R. Henry, William H. Herman, Jens Juul Holst, Frank B. Hu et al. “Type 2 diabetes mellitus.” Nature reviews Disease primers, 2015.

Kamana, K. C., SumistiShakya, and Hua Zhang. “Gestational diabetes mellitus and macrosomia: a literature review.” Annals of Nutrition and Metabolism, Issue. 2, pp. 14–20, 2015,.

Shih-Chiang, Weu Wang, Ka-Wai Tam, Shen, Hsin-An Chen, Yen-Kuang Lin, Shih-Yun Wang, Ming-Te Huang, and Yen-Hao Su, “Validating Risk Prediction Models of Diabetes Remission After Sleeve Gastrectomy”, Obesity surgery 29, no. 1 , 2019, pp. 221–229.

Srivastava S., Sharma L., Sharma V., Kumar A., Darbari H., “Prediction of Diabetes Using Artificial Neural Network Approach”, Communication and Information Processing, vol. 478. Springer, 2019.

Perveen, Sajida, Muhammad Shahbaz, Karim Keshavjee, and Aziz Guergachi, “Metabolic Syndrome and Development of Diabetes Mellitus: Predictive Modeling Based on Machine Learning Techniques”, IEEE Access 7, 2018, pp. 1365–1375.

López, Beatriz, Ferran Torrent-Fontbona, Ramón Viñas, and José Manuel Fernández-Real, “Single Nucleotide Polymorphism relevance learning with Random Forests for Type 2 diabetes risk prediction”, Artificial intelligence in medicine 85, 2018, pp. 43–49.

Wu, Chieh-Chen, Wen-Chun Yeh, Wen-Ding Hsu, Md Mohaimenul Islam, Phung Anh Alex Nguyen, Tahmina Nasrin Poly, Yao-Chin Wang, Hsuan-Chia Yang, and Yu- Chuan Jack Li, “Prediction of fatty liver disease using machine learning algorithms”, Computer methods and programs in biomedicine 170, 2019, pp. 23–29.

Alexander, Linda, Roger Johnson, and John Weiss. “Exploring Zipf’s law.” Teaching Mathematics and Its Applications: International Journal of the IMA, vol. 17, no. 4, 1998, pp. 155–158.

Adamic, L. A., and Huberman, B. A. Zipf’s law and the Internet. Glottometrics, vol. 3, no. 1, 2002, pp. 143–150.

Gabaix, Xavier. “Zipf’s law for cities: an explanation.” The Quarterly journal of economics, vol. 114, no. 3, 1999, pp. 739–767.

Okuyama, K., Takayasu, M., and Takayasu, H, Zipf’s law in income distribution of companies. Physica A: Statistical Mechanics and its Applications, vol. 269, no. 1, 1999, pp. 125–131.

Corominas-Murtra, B., Fortuny, J., and Sole, R. V, Emergence of Zipf’s law in the evolution of communication. Physical Review E, vol. 83, no. 3, 2011, pp. 036115.

Arshad, S., Hu, S., and Ashraf, B. N, Zipf’s law and city size distribution: A survey of the literature and future research agenda. Physica A: Statistical mechanics and its applications, vol. 492, 2018, pp. 75–92.

Downloads

Published

2022-05-21

How to Cite

Kumar, A. D. V. . (2022). Fuzzy Based Predication Technique for Diabetics Association Analysis for Salem District Farmers. Journal of ICT Standardization, 10(02), 165–178. https://doi.org/10.13052/jicts2245-800X.1024

Issue

Section

Intelligent Systems for Smart Applications