Error control in FORM reliability analysis

Authors

  • Laurent Gallimard LEME, Université Paris Ouest Nanterre La Défense 50 rue de Sèvres, 92410 Ville d’Avray,France

DOI:

https://doi.org/10.13052/17797179.2012.714850

Keywords:

failure probability; finite element method, FORM approximation, goal-oriented error estimation, importance sampling

Abstract

This paper deals with the failure probability error induced by the coupling between the first-order reliability method (FORM) and the Finite Element Method (FEM). A FEM error estimator based on the concept of error in constitutive relation associated with goal-oriented error estimation is proposed. Furthermore an importance sampling technique is used to compute the error due to the FORM approximation. Both these errors are used to choose a finite element mesh adapted to the problem.

Downloads

Download data is not yet available.

References

Babuška, I., & Rheinboldt, W. (1978). A posteriori estimates for the finite element method. International

Journal for Numerical Methods in Engineering, 12, 1597–1615.

Deb, M., Babuška, I., & Oden J. (2001). Solution of stochastics partial differential equations using Galerkin

finite element techniques. Computer Methods in Applied Mechanics and Engineering, 190, 6359–6372.

Der Kiureghian, A., & Dakessian, T. (1998). Multiple design points in first and second-order reliability.

Structural Safety, 20, 37–49.

Diez, P., & Calderon, G. (2007). Remeshing criteria and proper error representations for goal oriented hadaptivity.

Computer Methods in Applied Mechanics and Engineering, 196, 719–733.

Ditlevsen, O., & Madsen, H. (1996). Structural reliability methods. New York, NY: Wiley.

Gallimard, L. (2006). Evaluation of the local quality of the Von Mises’s stress and L2-norm of the

stress. Engineering Computations, 23(7/8), 876–897.

Gallimard, L. (2009). A constitutive relation error estimator based on traction-free recovery of the equilibrated

stress. International Journal for Numerical Methods in Engineering, 78, 460–482.

Gallimard, L. (2011a). Error bounds for the reliability index in finite element reliability analysis. International

Journal for Numerical Methods in Engineering, 87, 781–794.

Gallimard, L. (2011b). Estimation de l’erreur due á la méthode des éléments finis dans une analyse de fiabilité

de type FORM, Actes du 10ieme Colloque National en Calcul des Structures, Giens, 9–13 mai.

Gallimard, L., & Panetier, J. (2006). Error estimation of stress intensity factors for mixed-mode crack.

International Journal for Numerical Methods in Engineering, 68, 299–316.

Hasofer, A., & Lind, N. (1974). An exact and invariant first order reliability format. Journal of Engineering

Mechanics – ASCE, 100, 111–121.

Haukaas, T., & Der Kiureghian, A. (2006). Strategies for finding the design point in non-linear finite

element reliability analysis. Probabilistic Engineering Mechanics, 21, 133–147.

Kelly, D., & Isles, J. (1989). Procedures for residual equilibration and local error estimation in the finite

element method. Communications in Applied Numerical Methods, 5, 497–505.

Ladevèze, P., & Florentin, E. (2006). Verification of stochastic models in uncertain environments using

the constitutive relation error method. Computer Methods in Applied Mechanics and Engineering,

, 225–234.

Ladevèze, P., & Leguillon, D. (1983). Error estimate procedure in the finite element method and application.

SIAM Journal on Numerical Analysis, 20(3), 485–509.

Ladevèze, P., Rougeot, P., Blanchard, P., & Moreau, J. (1999). Local error estimators for finite element

analysis. Computer Methods in Applied Mechanics and Engineering, 176, 231–246.

Lemaire, M. (2005). Fiabilité des structures. Paris: Hermes.

Melchers, R. (1989). Importance sampling in structural systems. Structural Safety, 6, 3–10.

Mitteau, J. (1999). Error evaluation for the computation of failure probability in static structural reliability

problems. Probabilistic Engineering Mechanics, 14, 119–135.

Peraire, J., & Patera, A. (1998). Bounds for linear-functional outputs of coercive partial differential

equations: local indicators and adaptive refinement. In P. Ladevèze & J. Oden (Eds.), Advances in

adaptive computational methods (pp. 199–216). Cachan: Elsevier.

Prudhomme, S., & Oden, J. (1999). On goal-oriented error estimation for elliptic problems: application

to the control of pointwise errors. Computer Methods in Applied Mechanics and Engineering, 176,

–331.

Tada, H., Paris, P., & Irwin, G. (2000). The stress analysis of crack handbook. New York, NY: ASME

Press.

Zhang Y., & Der Kiureghian, A. (1995). Two improved algorithms for reliability analysis. Reliability

and Optimization of Structural Systems. In R. Rackwitz, G. Augusti and A. Borri (Eds.) Proceedings

th IFIP WG7.5 working conference on reliability and optimization of structural systems. (pp.

–304). Chapman & Hall.

Zienkiewicz, O., & Zhu, J. (1987). A simple error estimator and adaptive procedure for practical engineering

analysis. International Journal for Numerical Methods in Engineering, 24, 337–357.

Downloads

Published

2012-06-06

How to Cite

Gallimard, L. . (2012). Error control in FORM reliability analysis. European Journal of Computational Mechanics, 21(3-6), 231–241. https://doi.org/10.13052/17797179.2012.714850

Issue

Section

Original Article