Un estimateur d’erreur en relation de comportement pour les problèmes d’impact
Keywords:
impact, friction, dynamics, error estimator, finite elementsAbstract
In this paper we present an error estimator to control the quality of finite elements impact simulations under small strain assumption. The error measure proposed is based on an extension of the Drucker error developped for transient dynamics problems. The contact with Coulomb friction is modeled using a bipotential. The manner of building the error measure and some examples are presented.
Downloads
References
Ainsworth M., Oden J.-T., ”A posteriori error estimation in fınite element analysis”, Computer
Methods in Applied Mechanics and Engineering, vol. 142, p. 1-88, 1997.
Aubry D., Lucas D., Tie B., ”Adaptative strategy for transient/coupled problems - Applications
to thermoelasticity and elastodynamics”, Computer Methods in Applied Mechanics and Engineering,
vol. 176, p. 41-50, 1999.
Babuska I., RheinboldtW.-C., ”Error estimates for adaptive finite element computations”, SIAM
J. Num. Anal., vol. 15, 4, p. 736-754, 1978.
Belytschko T., Hughes T.-J.-R., Computational methods for transient analysis, North-Holland,
Boroomand B., Zienkiewicz O.-C., ”Recovery procedures in error estimation and adaptivity:
adaptivity in nonlinear problems of elasto-plasticity behaviour”, Advances in Adaptive
Computational Methods in Mechanics, p. 383-410, 1998.
Bui H., Introduction aux problèmes inverses en mécanique des matériaux, Eyrolles, 1993.
Combe J.-P., Ladevèze P., Pelle J.-P., ”Constitutive relation error estimator for transient finite
element analysis”, Computer Methods in Applied Mechanics and Engineering, vol. 176,
p. 165-185, 1999.
Coorevits P., Hild P., Pelle J.-P., ((Contrôle et adaptation des calculs éléments finis pour les
problèmes de contact unilatéral)), Revue européenne des éléments finis, vol. 8, p. 7-29,
Coorevits P., Hild P., Pelle J.-P., ”A posteriori error estimation for unilateral contact with matching
and nonmatching meshes”, Computer Methods in Applied Mechanics and Engineering,
vol. 186, p. 65-83, 2000.
Eriksson K., Estep D., Hansbo P., Johnson C., Computational differential equations, Cambridge
University Press, 1996.
Gibert R.-J., Vibrations des structures, Interactions avec les fluides, Sources d’excitation aléatoires,
Eyrolles, 1988.
Kim J.-O., Kwak B.-M., ”Frictional dynamic contact analysis using finite element nodal displacement
description”, Computers and Structures, vol. 42, p. 797-807, 1992.
Ladevèze P., Comparaison de modèles de milieux continus, PhD thesis, Université P. et
M. Curie, 1975.
Ladevèze P., Chamoin L., Florentin E., ”Strict upper and lower bounds of outputs of interest for
linear and nonlinear structural problems”, International Conference on Adaptive Modeling
and Simulation, 2005.
Ladevèze P., Pelle J.-P., La maîtrise du calcul en mécanique linéaire et non linéaire, Hermès,
Ladevèze P., Pelle J.-P., Rougeot P., ”Error estimation and mesh optimization for classical finite
elements”, Engineering Computation, vol. 8, p. 69-80, 1991.
Louf F., Combe J.-P., Gallimard L., Pelle J.-P., ”Error Estimation for Impact Problems”, Salerne,
Italie, p. 611-615, 2003.
Louf F., Combe J.-P., Pelle J.-P., ((Estimations d’erreur pour les problèmes de contact unilatéral
avec frottement)), Revue européenne des éléments finis, vol. 10, p. 907-928, 2001.
Pelle J.-P., Combe J.-P., Fanget A., ”Evaluation des erreurs de discrétisation pour les simulations
d’impact”, Revue européenne des éléments finis, vol. 11, p. 621-650, 2002.
Raous M., Cescotto S., Curnier A., Millard A., Modélisation mécanique et numérique du
contact et du frottement, Cours IPSI, 1996.
Raous M., Chabrand L., Lebon F., ”Numerical methods for frictional contact problems and applications”,
Journal de Mécanique Théorique et Appliquée, vol. numéro spécial, 1/7, p. 111-
, 1988.
Rieger A., Wriggers P., ”Adaptive methods for frictionless contact”, Computers and Structures,
vol. 79, p. 2197-2208, 2001.
Saxce. G. de, ”Une généralisation de l’inégalité de Fenchel et ses applications aux lois constitutives”,
Comptes rendus de l’Académie des Sciences, vol. 314, p. 125-129, 1992.
Vola D., Pratt E., Raous M., Jean M., ((Programmation mathématique pour des problèmes de
contact avec frottement en dynamique)), Actes du troisième colloque national en calcul des
structures, Giens, France (Var), p. 441-446, 1997.
Wiberg N.-E., Lie X.-D., ”A postprocessed error estimate and an adaptive procedure for the semidiscrete
fınite element method in dynamic analysis”, International Journal of Numerical
Methods in Engineering, vol. 37, p. 3585-3603, 1994.
Wriggers P., Fischer K., Rieger A., ”Recent New Developments in Contact Mechanics”, VIIe
International Conference on Computational Plasticity, Barcelona, Spain, 2003.
Wriggers P., Scherf O., ”Different a posteriori error estimators and indicators for contact problems”,
Mathematics and Computer Modelling, vol. 28, p. 437-447, 1997.
Wriggers P., Scherf O., ”Adaptive fınite element techniques for frictional contact problems involving
large elastic strains”, Computer Methods in Applied Mechanics and Engineering,
vol. 151, 3-4, p. 593-603, 1998.
Zienkiewicz O.-C., Zhu J.-Z., ”A simple error estimator and adaptative procedure for practical
engineering analysis”, International Journal for Numerical Methods in Engineering,
vol. 24, p. 337-357, 1987.