Material fatigue simulation using a periodic time-homogenisation method
DOI:
https://doi.org/10.13052/17797179.2012.714853Keywords:
periodic homogenisation, time multiscale, combined cycle fatigue, dynamicsAbstract
This paper deals with the numerical simulation of combined cycle fatigue, which is characterised by two periodic loads, whose frequencies are very different one from the other. Rather than using classical fatigue life estimations, a time transient evolution model is solved using a periodic time-homogenisation method. This latter is based on the assumption that the time scales associated with the two periodic loads are decoupled. Different results on academic as well as industrial examples are presented. An extension of the proposed method up to three time scales is eventually proposed in order to speed up the numerical simulations.
Downloads
References
Aubry, D., & Puel, G. (2010). Two-timescale homogenization method for the modeling of material fatigue.
IOP Conference Series: Material Science and Engineering, 10, 012113.
Bensoussan, A., Lions, J.L., & Papanicolaou, G. (1978). Asymptotic Analysis for Periodic Structures.
Burlington, MA: Elsevier.
Blekhman, I.I. (1994). Vibrational mechanics. Physmatlit. Moscow (In Russian, English edition by
World Scientific in 2000).
Chen, W., & Fish, J.A. (2001). Dispersive model for wave propagation in periodic heterogeneous media
based on homogenization with multiple spatial and temporal scales. Journal of Applied Mechanics,
(2), 153–161.
Devulder, A., Aubry, D., & Puel, G. (2010). Two-time scale fatigue modelling: Application to damage.
Computational Mechanics, 45(6), 637–646.
Guennouni, T. (1988). Sur une méthode de calcul de structures soumises à des chargements cycliques:
l’homogénéisation en temps (On a method for calculating structures under cyclic loadings: time
homogenisation). Mathematical Modelling and Numerical Analysis, 22(3), 417–455.
Guennouni T., & Aubry, D. (1986). Réponse homogénéisée en temps de structures sous chargements
cycliques, Comptes rendus de l’Académie des sciences (Equivalent response of structures under cyclic
loadings). Série II. Mécanique, physique, chimie, sciences de l’univers, sciences de la terre, 303
(20): 1765–1768.
Lemaitre, J., & Chaboche, J.-L. (1990). Mechanics of solid materials. Cambridge: Cambridge University
Press.
Oskay, C., & Fish, J. (2004). Fatigue life prediction using 2-scale temporal asymptotic homogenization.
International Journal for Numerical Methods in Engineering, 61(3), 329–359.
Sanchez-Palencia E. (1980). Non-homogeneous media and vibration theory. Berlin: Springer.