Elastic electron scattering using the finite element method
Forward and inverse problems
DOI:
https://doi.org/10.13052/EJCM.19.117-128Keywords:
elastic scattering, TEM, inverse problem, adjoint state, regularizationAbstract
We address here the case of electron-matter elastic interaction as it occurs in Transmission Electron Microscopy (TEM) experiments. In the forward problem, we show that it is possible to derive the scattered electron wave function as the solution of a Helmholtz equation. This equation depends on the spatial potential associated with the analyzed sample, and can be relevantly solved using the Finite Element Method (FEM). Then we present an inverse formulation dealing with the determination of the sample’s potential when the total wave function is measured at the exit plane of the sample.
Downloads
References
Ashkroft N. W., Mermin N. D., Physique des Solides, EDP Sicences, Les Ulis, 2002.
Bangerth W., Joshi A., Sevick-Muraca E. M., “ Adaptive FE methods for increased resolution
in fluorescence optical tomography”, Progress in Biomedical Optics and Imaging, vol. 6,
p. 318-329, 2007.
Beilina L., Clason C., “ An adaptive hybrid FEM/FDMmethod for an inverse scattering problem
in scanning acoustic microscopy”, SIAM Journal on Scientific Computing, vol. 28, n° 1,
p. 382-402, 2006.
Beilina L., Johnson C., “ A posteriori error estimation in computational inverse scattering”,
Mathematical Models and Methods in Applied Sciences, vol. 15, n° 1, p. 23-37, 2005.
Chavent G., “ Quasi-convex sets and size × curvature condition, application to nonlinear inversion”,
Applied Mathematics and Optimization, vol. 24, n° 1, p. 129-169, 1991.
Epanomeritakis I., Akçelik V., Ghattas O., Bielak J., “ A Newton-CG method for large-scale
three-dimensional elastic full-waveform seismic inversion”, Inverse Problems, vol. 24, n° 3,
p. 034015, 2008.
Eriksson K., Estep D., Hansbo P., Johnson C., Computational Differential Equations, 2nd edn,
Cambridge University Press, Cambridge, 1996.
Ishizuka K., Uyeda N., “ A new theoretical and practical approach to the multislice method”,
Acta Crystallographica Section A, vol. 33, p. 740-749, 1977.
Kirkland E. J., Advanced Computing in Electron Microscopy, Plenum, New York, 1998.
Popov A. V., “ Computation of paraxial wave fields using transparent boundary conditions”,
Computational Mathematics and Mathematical Physics, vol. 46, n° 9, p. 1595-1600, 2006.
Puel G., Aubry D., “ Identification of a spatial field of material properties with adaptive regularization
and meshes”, Proceedings of IDETC/CIE 2008, ASME, New York, p. (CD-ROM),
August 3-6, 2008.
Schattschneider P., Verbeeck J., Hamon A. L., “ Real space maps of atomic transitions”, Ultramicroscopy,
vol. 109, n° 7, p. 781-787, 2009.
Smith A. R., Eyring L., “ Calculation, display and comparison of electron microscope images
modeled and observed”, Ultramicroscopy, vol. 8, p. 65-78, 1982.
Stadelmann P. A., “ EMS - a software package for electron diffraction analysis and HREM
image simulation in materials science”, Ultramicroscopy, vol. 21, p. 131-146, 1987.
Verfurth R., A review of a posteriori error estimation and adaptive mesh-refinement techniques,
Wiley, Hoboken, 1996.
Wang Z. L., Elastic and inelastic scattering in electron diffraction and imaging, Plenum, New
York, 1995.
Williams D. B., Carter C. B., Transmission electron microscopy, Plenum, New York, 1996.