Sur la modélisation des ondes élastiques dans les structures : calculs adaptatif et parallèle avec équilibrage de charges

Authors

  • Bing Tie Laboratoire Mécanique Sols Structures Matériaux (CNRS - UMR8579) Ecole Centrale Paris F-92295 Chatenay-Malabry
  • Denis Aubry Laboratoire Mécanique Sols Structures Matériaux (CNRS - UMR8579) Ecole Centrale Paris F-92295 Chatenay-Malabry
  • Jean-Michel Leclère Laboratoire Mécanique Sols Structures Matériaux (CNRS - UMR8579) Ecole Centrale Paris F-92295 Chatenay-Malabry

Keywords:

adaptive computation, parallel computation, pace-time discontinuous Galerkin method, domain decomposition, hierarchical finite elements

Abstract

The numerical modelling of middle and high frequency elastic wave propagation in engineering structures often leads to the use of very fine and very expansive finite element models. To develop more reliable and efficient numerical tools for this issue, the adaptive finite element method offers the advantages of locally refined finite element meshes around the wave fronts in an automatically controlled way. Furthermore, the parallel computing proposes a natural way to reduce the computation time and increase the capacity of computers by duplicating processors. The aim of this paper is to propose a global approach which couples the adaptive and the parallel computations for the structural transient analysis. An adaptive and dynamic load balancing strategy is defined. The space-time discontinuous Galerkin method is used in order to assume appropriate frameworks for the adaptive remeshing procedure. A new domain decomposition method is proposed which uses two levels of hierarchical finite element meshes and leads to the scalability of the parallel computation. Several numerical results are presented to show the feasability of our approach.

Downloads

Download data is not yet available.

References

[AUB 98] AUBRY D., TIE B., LUCAS D., « Une approche integrée pour le calcul adaptatif par

éléments finis », Revue européenne des éléments finis, vol. 7, n 1-2-3, 1998, p. 104-118.

[AUB 99] AUBRY D., TIE B., LUCAS D., « Adaptive strategy for transient/coupled problems.

Applications to thermoelasticity and elastodynamics », Computer Methods in Applied and

Mechanical Engineering, vol. 176, 1999, p. 41-50.

[BAN ] BANK R., HOLSTM., « A New Paradigm for Parallel Adaptive Meshing Algorithms »,

SIAM J. on Scientific Computing, vol. to appear.

[FAR 94] FARHAT C., ROUX F., « Implicit parallel processing in structural mechanic », Computational

Mechanics Advances, vol. 2, 1994.

[JOH 93] JOHNSON C., « Discontinuous Galerkin finite element methods for second order hyperbolic

problems », Computer methods in Applied Mechanics and Engineering, vol. 107,

, p. 117-129.

[LEC 01] LECLÈRE J.-M., Modélisation parallèle de la propagation d’ondes dans les structures

par éléments finis adaptatifs, Thèse de doctorat, Ecole Centrale Paris. LMSSMat,

[SMI 96] SMITH B., BJORSTAD P., GROPP W., Domain decompoistion, Parallel multilvel

methods for elliptic partial differential equations, Cambridge University Press, 1996.

[TIE 93] TIE B., Eléments finis adaptatifs et hiérarchiques en élastoplasticité. Localisation

des déformations, Thèse de doctorat, Ecole Centrale Paris. LMSSMat, 1993.

[TIE 98a] TIE B., Note on some new hierarchical 2-level primal or dual substructuring methods,

Rapport interne, Ecole Centrale Paris, LMSSMat, 1998.

[TIE 98b] TIE B., AUBRY D., « A theoritical framework for generalized hierarchical approaches

refered to local mesh refinement », CD-ROM, Computational Mechanics,New

trends and Applications, WCCM IV Argentina, vol. CD-ROM, 1998.

[TIE 99] TIE B., AUBRY D., LECLÈRE J. M., « Méthode de décomposition de domaines à

deux niveaux pour les éléments finis hirarchiques en version », 4e Colloque en Calcul de

Structures, vol. 1, 1999.

Downloads

Published

2002-11-30

How to Cite

Tie, B., Aubry, D. ., & Leclère, J.-M. . (2002). Sur la modélisation des ondes élastiques dans les structures : calculs adaptatif et parallèle avec équilibrage de charges. European Journal of Computational Mechanics, 11(2-4), 173–184. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2577

Issue

Section

Original Article