A first step toward a PGD-based time parallelisation strategy

Authors

  • Fabien Poulhaon Laboratoire GeM de l’Ecole Centrale de Nantes – UMR CNRS 6183, 1 Rue de la Noë, 44231 Nantes Cedex 3, France
  • Francisco Chinesta Laboratoire GeM de l’Ecole Centrale de Nantes – UMR CNRS 6183, 1 Rue de la Noë, 44231 Nantes Cedex 3, France
  • Adrien Leygue Laboratoire GeM de l’Ecole Centrale de Nantes – UMR CNRS 6183, 1 Rue de la Noë, 44231 Nantes Cedex 3, France

DOI:

https://doi.org/10.13052/17797179.2012.714985

Keywords:

model reduction, Proper Generalised Decomposition, parametric models, separated representation, time parallelisation

Abstract

This paper proposes a new method for solving the heat transfer equation based on a parallelisation in time of the computation. A parametric multidimensional model is solved within the context of the Proper Generalised Decomposition (PGD). The initial field of temperature and the boundary conditions of the problem are treated as extra-coordinates, similar to time and space. Two main approaches are exposed: a “full” parallelisation based on an off-line parallel computation and a “partial” parallelisation based on a decomposition of the original problem. Thanks to an optimised overlapping strategy, the reattachment of the local solutions at the interfaces of the time subdomains can be improved. For large problems, the parallel execution of the algorithm provides an interesting speedup and opens new perspectives regarding real-time simulation.

Downloads

Download data is not yet available.

References

Achdou, Y., & Pironneau, O. (2005). Computational methods for option pricing. SIAM series in

Applied Math, Philadelphia.

Ammar, A., & Chinesta, F. (2008). Circumventing curse of dimensionality in the solution of highly multidimensional

models encountered in quantum mechanics using meshfree finite sums decomposition.

Lecture Notes Computational Science Engineering, 65, 1–17.

Ammar, A., Chinesta, F., Cueto, E., & Doblare, M. (2010). Proper Generalized Decomposition of timemultiscale

models. International Journal for Numerical Methods in Engineering, 83, 1114–1132.

Chinesta, F., Ammar, A., & Cueto, E. (2010). Recent advances and new challenges in the use of the

Proper Generalized Decomposition for solving multidimensional models. Archives of Computational

Methods in Engineering, 17(4), 327–350.

Chinesta, F., Ammar, A., Lemarchand, F., Beauchene, P., & Boust, F. (2008). Alleviating mesh constraints:

Model reduction, parallel time integration and high resolution homogenization. Computer

Methods in Applied Mechanics and Engineering, 197, 400–413.

Gonzalez, D., Masson, F., Poulhaon, F., Leygue, A., Cueto, E., & Chinesta, F. (in press). Proper Generalized

Decomposition based dynamic data driven inverse identification. Mathematics and Computers

in Simulation.

Ladeveze, P. (1999). Nonlinear computational structural mechanics. New York: Springer.

Lions, J.-L., Maday, Y., & Turinici, G. (2001). Résolution d’EDP par un schéma en temps “para réelle”.

Comptes Rendus Académie des Sciences, 332, 661–668.

Nouy, A. (2010). A priori model reduction through Proper Generalized Decomposition for solving timedependent

partial differential equations. Computer Methods in Applied Mechanics and Engineering,

, 1603–1626.

Pruliere, E., Chinesta, F., & Ammar, A. (2010). On the deterministic solution of multidimensionnal parametric

models using Proper Generalized Decomposition. Mathematics and Computers in Simulation,

, 791–810.

Ryckelynck, D., Chinesta, F., Cueto, E., & Ammar, A. (2006). On the “a priori”model reduction: Overview

and recent developments. Archives of Computational Methods in Engineering, State of the Art

Reviews, 13, 91–128.

European Journal of Computational Mechanics 311

Downloads

Published

2012-06-06

How to Cite

Poulhaon, F. ., Chinesta, F., & Leygue, A. . (2012). A first step toward a PGD-based time parallelisation strategy. European Journal of Computational Mechanics, 21(3-6), 300–311. https://doi.org/10.13052/17797179.2012.714985

Issue

Section

Original Article