A natural element updated Lagrangian approach for modelling fluid structure interactions

Authors

  • Andrés Galavís Aragón Institute of Engineering Research, University of Zaragoza Edificio Betancourt, María de Luna, 7, E-50018 Zaragoza, Spain
  • David González Aragón Institute of Engineering Research, University of Zaragoza Edificio Betancourt, María de Luna, 7, E-50018 Zaragoza, Spain
  • Elias Cueto Aragón Institute of Engineering Research, University of Zaragoza Edificio Betancourt, María de Luna, 7, E-50018 Zaragoza, Spain
  • Francisco Chinesta Laboratoire de mécanique des systèmes et des procédés UMR CNRS-ENSAM-ESEM Ecole Nationale Supérieure des Arts et Métiers, 151 boulevard de l’hôpital
  • Manuel Doblaré Aragón Institute of Engineering Research, University of Zaragoza Edificio Betancourt, María de Luna, 7, E-50018 Zaragoza, Spain

DOI:

https://doi.org/10.13052/REMN.16.323-336

Keywords:

fluid structure interaction, meshless methods, natural element method, α-shapes

Abstract

In this paper we present a novel methodology for the numerical simulation of fluid structure interactions in the presence of free surfaces. It is based on the use of the Natural Element Method (NEM) in an updated Lagrangian framework, together with the integration of the Navier-Stokes equations by employing a Galerkin-characteristics formulation. Tracking of the free-surface is made by employing shape constructors, in particular α- shapes. A theoretical description of the method is made and also some examples of the performance of the technique are included.

Downloads

Download data is not yet available.

References

Belytschko T., Lu Y. Y., Gu L., “Element-Free Galerkin Methods”, International Journal for

Numerical Methods in Engineering, 37, 1994, p. 229-256.

Chen Jiun-Shyan, Wu Cheng-Tang, Yoon Sangpil, You Yang, “A stabilized conforming

nodal integration for galerkin mesh-free methods”, International Journal for Numerical

Methods in Engineering, 50, 2001, p. 435-466.

Cueto E., Calvo B., Doblare M., “Modeling three-dimensional piece-wise homogeneous

domains using the α-shape based Natural Element Method”, International Journal for

Numerical Methods in Engineering, 54, 2002, p. 871-897.

Cueto E., Cegoñino J., Calvo B., Doblare M., “On the imposition of essential boundary

conditions in Natural Neighbour Galerkin methods”, Communications in Numerical

Methods in Engineering, vol. 19, n° 5, 2003, p. 361-376.

Cueto E., Doblare M., Gracia L., “Imposing essential boundary conditions in the Natural

Element Method by means of density-scaled alpha-shapes”, International Journal for

Numerical Methods in Engineering, vol. 49, n° 4, 2000, p. 519-546.

Cueto E., Sukumar N., Calvo B., Martinez M. A., Cegoñnino J., Doblare M., “Overview and

recent advances in Natural Neighbour Galerkin methods”, Archives of Computational

Methods in Engineering, vol. 10, n° 4, 2003, p. 307-384.

Donea J., “Arbitrary Lagrangian-Eulerian finite element methods”, Belytschko T.,

Hughes T. J. R., editors, Computer methods for transient analyses, Elsevier-Amsterdam,

, p. 474-516.

Donea J., Huerta A., Finite Element Methods for Flow Problems, John Wiley and sons, 2003.

Duchemin L., Popinet S., Josserand C., Zaleski S., “Jet formation in bubbles bursting at a free

surface”, Physics of Fluids, 14, 2002, p. 3000-3008.

Edelsbrunner H., Muecke E., “Three dimensional alpha shapes”, ACM Transactions on

Graphics, 13, p. 43-72, 1994.

Gonzalez D., Cueto E., Martinez M. A., Doblare M., “Numerical integration in Natural

Neighbour Galerkin methods”, International Journal for Numerical Methods in

Engineering, vol. 60, n° 12, 2004, p. 2077-2104.

Gonzalez D., Cueto E., Doblare M., “Volumetric locking in Natural Neighbour Galerkin

methods”, International Journal for Numerical Methods in Engineering, vol. 61, n° 4,

, p. 11-632.

González D., Cueto E., Chinesca F., Doblaré M., “A Natural Element updated Lagrangian

strategy for free-surface Fluid Dynamics”, Submitted, 2006.

Idelsohn S. R., Oñate E., del Pin F., “The particle finite element method: a powerful tool to

solve incompressible flows with free-surfaces and breaking waves”, International Journal

for Numerical Methods in Engineering, vol. 61, n° 7, 2004, p. 964-989.

Liu W. K., Jun S., Li S., Adee J., Belytschko T., “Reproducing kernel particle methods”,

International Journal for Numerical Methods in Engineering, 38, 1995, p. 1655-1679.

Martin J.C., Moyce W.J., “Part IV. an experimental study of the collapse of liquid columns

on a rigid horizontal plane”, Phil. Tran. R. Soc. London, 244, p. 312, 1952.

Martinez M. A., Cueto E., Alfaro I., Doblare M., Chinesta F., “Updated Lagrangian free

surface flow simulations with Natural Neighbour Galerkin methods”, International

Journal for Numerical Methods in Engineering, vol. 60, n° 13, 2004, p. 2105-2129.

Sibson R., “A Vector Identity for the Dirichlet Tesselation”, Mathematical Proceedings of the

Cambridge Philosophical Society , 87, 1980, p. 151-155.

Sibson R., “A brief description of natural neighbour interpolation”, Interpreting Multivariate

Data, V. Barnett (Editor), John Wiley, 1981, p. 21-36.

Sukumar N., Moran B., Belytschko T., “The Natural Element Method in Solid Mechanics”,

International Journal for Numerical Methods in Engineering, vol. 43, n° 5, 1998, p. 839-

Sukumar N., Moran B., Yu Semenov A., Belikov V. V., “Natural Neighbor Galerkin

Methods”, International Journal for Numerical Methods in Engineering, vol. 50, n° 1,

p. 1-27, 2001.

Downloads

Published

2007-08-23

How to Cite

Galavís, A. ., González, D. ., Cueto, E. ., Chinesta, F., & Doblaré, M. . (2007). A natural element updated Lagrangian approach for modelling fluid structure interactions. European Journal of Computational Mechanics, 16(3-4), 323–336. https://doi.org/10.13052/REMN.16.323-336

Issue

Section

Original Article