On the frontier of the simulation world

When models involve excessive degrees of freedom

Authors

  • Francisco Chinesta Laboratoire de Mécanique des Systèmes et des Procédés – LMSP UMR 8106 CNRS-ENSAM 151 Boulevard de l’Hôpital, F-75013 Paris
  • Amine Ammar Laboratoire de Rhéologie, UMR 5520 CNRS – INPG – UJF 1301 rue de la piscine, BP 53 Domaine universitaire F-38041 Grenoble cedex 9

DOI:

https://doi.org/10.13052/REMN.17.583-595

Keywords:

numerical modeling, multi-dimensional models, separated representations, model reduction, nano-physics, statistical mechanics

Abstract

In the last years, we have assisted to an impressive progression in the numerical modeling capabilities as a result of the progression in computer science but also in the numerical analysis. Thus, new scales have been explored, allowing modeling of richer and finer physical models. In this work we focus on some models encountered in the microscopic description of the physics, all of them with a common particularity: they involve an impressive number of degrees of freedom or are defined in highly multidimensional spaces.

Downloads

Download data is not yet available.

References

Ammar A., Chinesta F., “A particle strategy for solving the Fokker-Planck equation

governing the fiber orientation distribution in steady recirculating flows involving short

fiber suspensions”, Lectures Notes on Computational Science and Engineering, Springer,

, 2005, p. 1-16.

Ammar A., Chinesta F., Ryckelynck D., “Deterministic particle approach of Multi-Bead-Spring

polymer models”, European Journal of Computational Mechanics, vol. 15, n° 5, 2006,

p. 481-494.

Ammar A., Ryckelynck D., Chinesta F., Keunings R., “On the reduction of kinetic theory

models related to finitely extensible dumbbells”, Journal of Non-Newtonian Fluid

Mechanics, 134, 2006, p. 136-147.

Ammar A., Mokdad B., Chinesta F., Keunings R., “A new family of solvers for some classes

of multidimensional partial differential equations encountered in kinetic theory modeling

of complex fluids”, Journal of Non-Newtonian Fluid Mechanics, 139, 2006, p. 153-176.

Ammar A., Mokdad B., Chinesta F., Keunings R., “A new family of solvers for some classes

of multidimensional partial differential equations encountered in kinetic theory modeling

of complex fluids, Part II: Transient simulation using space-time separated

representations”, Journal of Non-Newtonian Fluid Mechanics, 144, 2007, p. 98-121.

Bird R.B., Curtiss C.F., Armstrong R.C., Hassager O., Dynamic of polymeric liquid, vol. 2,

Kinetic Theory, John Wiley & Sons, 1987.

Cancès E., Defranceschi M., Kutzelnigg W., Le Bris C., Maday Y., “Computational Quantum

Chemistry: a primer”, Handbook of Numerical Analysis, vol. X, Elsevier, 2003, p. 3-270.

Chaubal C.V., Srinivasan A., Egecioglu O., Leal L.G., “Smoothed particle hydrodynamics

techniques for the solution of kinetic theory problems. Part 1: Method”, Journal of Non-

Newtonian Fluid Mechanics, 70, 1997, p. 125-154.

Chinesta F., Chaidron G., Poitou A., “On the solution of the Fokker-Planck equations in

steady recirculating flows involving short fiber suspensions”, Journal of Non-Newtonian

Fluid Mechanics, 113/2-3, 2003, p. 97-125.

Cook D.B., Handook of computational quantum chemistry, Dover, 2005.

Keunings R., “Micro-macro methods for the multiscale simulation of viscoelastic flow using

molecular models of kinetic theory”, Rheology Reviews 2004, D.M. Binding and

K. Walters (Eds.), British Society of Rheology, 2004, p. 67-98.

Ladeveze P., Nonlinear computational structural mechanics, Springer, NY, 1999.

Laughlin R.B., “The theory of everything”, Proceedings of the USA National Academy of

Scienecs, 97, 2000.

Lorenz E.N., Empirical orthogonal functions and statistical weather prediction, MIT,

Department of Meteorology, Scientific Report N1, Statistical Forecasting Project, 1956.

Lozinski A., Chauviere C., “A fast solver for Fokker-Planck equation applied to viscoelastic

flows calculations: 2D FENE model”, J. Computational Physics, 189, 2003, p. 607-625.

Mokdad B., Pruliere E., Ammar A., Chinesta F., “On the simulation of kinetic theory models

of complex fluids using the Fokker-Planck approach”, Applied Rheology, vol. 17, n° 2,

, 2007, p. 1-14.

Ottinger H.C., Stochastic processes in polymeric fluids, Springer, 1996.

Park H.M, Cho D.H., “The use of the Karhunen-Loève decomposition for the modelling of

distributed parameter systems”, Chem. Engineer. Science, 51, 1996, p. 81-98.

Ryckelynck D., “A priori hyperreduction method: an adaptive approach”, Journal of

Computational Physics, 202, 2005, p. 346-366.

Ryckelynck D., Chinesta F., Cueto E., Ammar A., “On the a priori model reduction: overview

and recent developments”, Archives of Computational Methods in Engineering, State of

the Art Reviews, vol. 13, n° 1, 2006, p. 91-128.

Somasi M., Khomami B., Woo N.J., Hur J.S., Shaqfeh E.S.G., “Brownian dynamics simulation

of bead-rod and bead-spring chains: numerical algorithms and coarse graining issues”,

Journal of Non-Newtonian Fluid Mechanics, 108, 2002, p. 227-255.

Downloads

Published

2008-06-11

How to Cite

Chinesta, F., & Ammar, A. . (2008). On the frontier of the simulation world: When models involve excessive degrees of freedom. European Journal of Computational Mechanics, 17(5-7), 583–595. https://doi.org/10.13052/REMN.17.583-595

Issue

Section

Original Article