A Mindlin multilayered hybrid-mixed approach for laminated and sandwich structures without shear correction factors
DOI:
https://doi.org/10.13052/EJCM.19.725-742Keywords:
sandwich plates, laminated plates, finite element, hybrid-mixed model, Reissner/Mindlin, transverse shearAbstract
A new hybrid-mixed variational approach for the linear analysis of laminated and sandwich plates, without transverse shear correction factors, is presented. It’s based on the first order theory of Reissner/Mindlin. A quadratic approximation through the thickness is proposed for transverse shear stresses (continuity C-1), and two equilibrium equations are used for their approximation. This reduces in consequence the number of interpolation parameters of bending stresses, which are eliminated using the static condensation technique. The proposed approach has been adapted to a quadrilateral 4-node finite element, free of locking, to which performances have been analyzed using some known problems of sandwich and laminated structures.
Downloads
References
Auricchio F., Sacco E., “A mixed-enhanced finite-element for the analysis of laminated
composite plates”, International Journal for Numerical Methods in Engineering, vol. 44,
n° 10, 1999, p. 1481-1504.
Ayad R., Talbi N., Ghomari T., “Modified discrete Mindlin hypothesises for laminated
composite structures”, Composites Sciences and Technology, vol. 69, 2009, p. 125-128.
Ayad R., Batoz J.L., Dhatt G., « Un élément quadrilatéral de plaque basé sur une formulation
mixte-hybride avec projection en cisaillement », Revue Européenne des Eléments Finis,
vol. 4, 1995, p. 415-440.
Ayad R., Dhatt G., Batoz J.L., “A new hybrid-mixed variational approach for Reissner-
Mindlin plates. The MiSP model”, International Journal for Numerical Methods in
Engineering, vol. 42, 1998, p. 1149-1179.
Azar J.J., “Bending Theory for Multilayer Orthotropic Sandwich Plates”, AIAA Journal,
vol. 6, 1968., p. 2166-2169.
Bathe K.J., Dvorkin E.N., “A four-node plate bending element based on Mindlin/Reissner
plate theory and a mixed interpolation”, International Journal for Numerical Methods in
Engineering, vol. 21, 1985, p. 367-383.
Bathe K.J., Finite element procedures, Prentice Hall, 1995.
Belytschko T., Moran B., Liu W.K., Nonlinear finite elements for continua and structures,
John Wiley & Sons Inc, 2000.
Bishoff M., Ramm E., “Shear deformable shell element for large strains and rotation”,
International Journal for Numerical Methods In Engineering, vol. 40, 1997, p. 4427-4449.
Boffi D., Brezzi F., Demkowicz L.F., Durán R.G., Falk R.S., Fortin M., “Mixed Finite
Elements, Compatibility Conditions, and Applications”, Lecture Notes in Mathematics,
C.I.M.E, Firenze, vol. 1939, 2008.
Bouabdallah M.S., Modélisation de coques cylindriques raidies, isotropes et composites,
Thèse de doctorat, Université de Technologie de Compiègne, 1992.
Cen S., Long Y., Yao Z., “A new hybrid enhanced displacement based element for the analysis
of laminated composite plate”, Compurers and Structures, vol. 80, 2002, p. 819-833.
Desai Y.M., Ramtekkar G.S., Shah A.H., “Dynamic analysis of laminated composite plates
using a layer-wise mixed finite element model”, Composite Structures, vol. 59, 2003,
p. 237-249.
Dvorkin E.N., Bathe K.J., “A continuum mechanics based four-node shell element for general
non-linear analysis”, Engineering Computations, vol. 1, 1984, p. 77-88.
Herrman L.R., “A bending analysis for plates”, Proceedings of the 1st Conference on Matrix
Methods in Stuctural Mechanics, Ohio, 1965, USA, p. 577-602.
Hughes T.J.R, The finite element method: linear static and dynamic finite element analysis,
Dover Publications, 2000.
Kim J.G., Kim Y.Y., “A new higher-order hybrid-mixed curved beam element”, International
Journal for Numerical Method in Engineering, vol. 43, 1998, p. 925-940.
Lardeur P., Batoz J.L., “Composite plate analysis using a new discrete shear triangular finite
element”, International Journal for Numerical Methods In Engineering, vol. 27, 1989,
p. 343-360.
Lardeur P., Développement et évaluation de deux nouveaux éléments finis de plaques et
coques composites avec influence du cisaillement transversal, Thèse de doctorat,
Université de Technologie de Compiègne, 1990.
Malkus D.S., Hughes T.J.R., “Mixed finite element methods-reduced and selective integration
techniques: a uniform of concepts”, Computer Methods in Applied Mechanics and
Engineering, vol. 15, 1978, p. 63-81.
Matthews F.L., Davies G.A.O., Hitching D., Soutis C., Finite element modelling of composite
materials and structures, Wood Publishing Ltd, Abington Hall, Cambridge, 2000.
Nayak A.K., Shenoi R.A., Moy S.S.J., “Transient response of initially stressed composite
sandwich plates”, Finite Elements in Analysis and Design, vol. 42, 2006, p. 821-836.
Pagano N.J., Hatfield S.J., “Elastic behaviour of multilayered bidirectional composites”, AIAA
Journal, vol. 10, n° 7, 1972, p. 931-933.
Plantema F.J., Sandwich construction; the bending and buckling of sandwich beams, plates,
and shells, New York, Wiley, 1966.
Prever T., Seibi A.C., Al-Jahwari F.K.S., “Analysis of thick orthotropic laminated composite
plates based on higher order shear deformation theory”, Composite Structures, vol. 71,
, p. 414-422.
Simo J.C., Hughes T.J.R., “On the variational foundations of Assumed Strain Methods”,
Journal of Applied Mechanics, vol. 53, 1986, p. 51-54.
Song C., Yuqiu L., Zhenhan Y., “A new hybrid enhanced displacement based element for the
analysis of laminated composite plate”, Computer and Structures, vol. 80, 2008, p. 819-833.
Tafla A., Eléments finis mixtes-hybrides naturels sans facteurs correctifs du cisaillement pour
les plaques et les coques composites multicouches, Thèse de doctorat, Université de
Reims Champagne-Ardenne, 2007.
Tanov R., Tabiei A., “A simple correction to the first –order shear deformation shell finite
element formulation”, Finite Element in Analysis and Design, vol. 35, 2003, p. 189-197.
Topdar P., Sheikh A.H., Dhang N., “Finite element Analysis of composite an Sandwich Plates
Using a Continuous Inter-Laminar Shear Stress Model”, Journal of Sandwich Structures
And Materials, vol. 5, n°3, 2003., p. 207-231.
Wanmin H., Petyt M., “Linear vibration analysis of laminated rectangular plates using the
hierarchical finite element method-I, Free Vibration Analysis”, Compurers and
Structures, vol. 61, n° 4, 1996, p. 705-712.
Zhang Yixia X., Yang Chunhui H., “Recent Advances of Finite Elements for Laminated
Composite Plates”, Recent Patents on Engineerings, vol. 2, n° 1, 2008, p. 36-46.
Zienkiewicz O.C., Lefebvre D., “Three field mixed approximation and the plate bending
proble”, Communications in Applied Numerical Methods, vol. 3, 1987, p. 301-309.
Zienkiewicz O.C., The finite element method for solid and structural mechanics, Elsevier
Butterworth-Heinemann, 2005.