A multilayered 3D hexahedral finite element with rotational DOFs
Keywords:
3D finite element, multilayer solid element, rotational DOFs, composite structuresAbstract
The study presents a multilayer eight-node hexahedral finite element with rotational degree of freedom to model composite laminate structures. Its formulation is based on virtual rotations of a nodal fibre within the element that enriches the displacement vector approximation. A particular attention is made to the determination of transverse deflections as well as inplane stresses. To assess the accuracy of the proposed element, several benchmarks are considered and the obtained results are compared with 3D elasticity solutions and other advanced finite elements from the literature.
Downloads
References
Abdullah, E., Ferrero, J. F., Barrau, J. J., & Mouillet, J. B. (2007). Development of a new finite
element for composite delamination analysis. Composites Science and Technology, 67,
–2218.
Ayad, R. (2002). Contribution à la modélisation numérique pour l’analyse des solides et des
structures, et pour la mise en forme des fluides non newtoniens. Application à des matériauxd’emballage [Contribution to the numerical modeling of solids and structures and the non-
Newtonian fluids forming process. Application to packaging materials]. Habilitation to
conduct researches, University of Reims, Reims, France. (in French).
Ayad, R., Talbi, N., & Ghomari, T. (2009). Modified discrete Mindlin hypothesises for laminated
composite structures. Composites Science and Technology, 69, 125–128.
Ayad, R., Zouari, W., Meftah, K., Zineb, T. B., & Benjeddou, A. (2013). Enrichment of linear
hexahedral finite elements using rotations of a virtual space fiber. International Journal for
Numerical Methods in Engineering, 95, 46–70.
Bambole, A., & Desai, Y. (2007). Hybrid-interface element for thick laminated composite plates.
Computers and Structures, 85, 1484–1499.
Bussamra, F., Neto, E. L., & Raimundo, D. R. Jr. (2012). Hybrid quasi-Trefftz 3-D finite elements
for laminated composite plates. Computers Structures, 92–93, 185–192.
Chen, D., Shah, D., & Chan, W. (1996). Interfacial stress estimation using least-square
extrapolation and local stress smoothing in laminated composites. Computers and Structures,
, 765–774.
Desai, Y. M., Ramtekkar, G. S., & Shah, A. H. (2003a). Dynamic analysis of laminated composite
plates using a layer-wise mixed finite element model. Composite and Structures, 59, 237–249.
Desai, Y. M., Ramtekkar, G. S., & Shah, A. H. (2003b). A novel 3D mixed finite-element model
for statics of angle-ply laminates. International Journal for Numerical Methods in Engineering,
, 1695–1716.
Feng, W., Hoa, S. V., & Huang, Q. (1997). Classification of stress modes in assumed stress fields
of hybrid finite elements. International Journal for Numerical Methods in Engineering, 40,
–4339.
Han, J., & Hoa, S. V. (1993). A three-dimensional multilayer composite finite element for stress
analysis of composite laminates. International Journal for Numerical Methods in Engineering,
, 3903–3914.
Harrison, P. N., & Johnson, E. R. (1996). A mixed variational formulation for interlaminar
stresses in thickness-tapered composite laminates. International Journal of Solids and
Structures, 33, 2377–2399.
Hu, F., Soutis, C., & Edge, E. (1997). Interlaminar stresses in composite laminates with a circular
hole. Composite and Structures, 37, 223–232.
Icardi, U., & Atzori, A. (2004). Simple, efficient mixed solid element for accurate analysis of
local effects in laminated and sandwich composites. Advances in Engineering Software, 35,
–859.
Icardi, U., & Bertetto, A. (1995). An evaluation of the influence of geometry and of material
properties at free edges and at corners of composite laminates. Computers and Structures,
, 555–571.
Kraus, H. (1967). Thin elastic shells: An introduction to the theoretical foundations and the
analysis of their static and dynamic behavior. New York, NY: John Wiley & Sons, University
of California.
Kuhlmann, G., & Rolfes, R. (2004). A hierarchic 3D finite element for laminated composites.
International Journal for Numerical Methods in Engineering, 61, 96–116.
Lessard, L. B., Schmidt, A. S., & Shokrieh, M. M. (1996). Three-dimensional stress analysis of
free-edge effects in a simple composite cross-ply laminate. International Journal of Solids
and Structures, 33, 2243–2259.
Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite
element accuracy. Finite Elements in Analysis and Design, 1, 3–20.
Marimuthu, R., Sundaresan, M., & Rao, G. (2001). Estimation of interlaminar normal and shear
stresses by three-dimensional hexahedron element using mixed finite element formulation.
Journal of the Institution of Engineers, 82, 50–55.Marimuthu, R., Sundaresan, M., & Rao, G. (2003). Estimation of interlaminar stresses in
laminated plates subjected to transverse loading using three-dimensional mixed finite
element formulation the institution of engineers (India). Technical Journal of Aerospace
Engineering, 84, 1–8.
Meftah, K. (2013). Modélisation numérique des solides par éléments finis volumiques basés sur
le concept SFR [Numerical modeling of 3D structure by solid finite elements based upon the
SFR concept]. (Space Fiber Rotation) (PhD thesis). University of Biskra, Algeria. (in French).
Meftah, K., Ayad, R., & Hecini, M. (2013). A new 3D 6-node solid finite element based upon
the space fibre rotation concept. European Journal of Computational Mechanics, 22(1), 1–29.
Mijuca, D. (2010). On a new 3D primal-mixed finite element approach for thermal stress
analysis of multi-layered geometrically multiscale structures. Finite Elements in Analysis
and Design, 46, 299–310.
Mindlin, R. D. (1951). Influence of rotary inertia and shear on flexural motions of isotropic,
elastic plates. Journal of Applied Mechanics, 18, 31–38.
Noor, A. K., Bert, C. W., & Burton, W. S. (1996). Computational models for sandwich panels
and shells. Applied Mechanics Reviews, 49, 155–199.
Noor, A. K., Burton, W., & Peters, J. M. (1991). Assessment of computational models for
multilayered composite cylinders. International Journal of Solids and Structures, 27,
–1286.
Pagano, N. (1970). Exact solutions for rectangular bidirectional composites and sandwich
plates. Journal of Composite Materials, 4, 20–34.
Palazotto, A. N., & Dennis, S. T. (1992). Nonlinear analysis of shell structures. Washington,
DC: AIAA Series.
Pandya, B., & Kant, T. (1988). Flexural analysis of laminated composites using refined higherorder
plate bending elements. Computer Methods in Applied Mechanics and Engineering,
, 173–198.
Ramtekkar, G. S., Desai, Y. M., & Shah, A. H. (2002). Mixed finite-element model for thick
composite laminated plates. Mechanics of Advanced Materials and Structures, 9, 133–156.
Ramtekkar, G. S., Desai, Y. M., & Shah, A. H. (2003). Application of a three-dimensional
mixed finite element model to the flexure of sandwich plate. Computers and Structures, 81,
–2198.
Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. Journal of
Applied Mechanics, 51, 745–752.
Reddy, J. N. (1989). On refined computational models of composite laminates. International
Journal for Numerical Methods in Engineering, 27, 361–382.
Roy, A. K., & Sihn, S. (2001). Development of a three-dimensional mixed variational model
for woven composites. I. Mathematical formulation. International Journal of Solids and
Structures, 38, 5935–5947.
Sedira, L., Ayad, R., Sabhi, H., Hecini, M., & Sakami, S. (2012). An enhanced discrete Mindlin
finite element model using a zigzag function. European Journal of Computational Mechanics,
, 122–140.
Sihn, S., & Roy, A. K. (2001). Development of a three-dimensional mixed variational model
for woven composites. II. Numerical solution and validation. International Journal of Solids
and Structures, 38, 5949–5962.
Simo, J., Rifai, M., & Fox, D. (1990). On a stress resultant geometrically exact shell model. Part
IV: Variable thickness shells with through-the-thickness stretching. Computer Methods in
Applied Mechanics and Engineering, 81, 91–126.
Sze, K. Y., & Ghali, A. (1993). A hybrid brick element with rotational degrees of freedom.
Computational Mechanics, 12, 147–163.Van Hoa, S., & Feng, W. (1998). Hybrid finite element method for stress analysis of laminated
composites. New York, NY: Springer Science, Kluwer Academic Publishers.
Whitney, J., & Pagano, N. (1970). Shear deformation in heterogeneous anisotropic plates.
Journal of Applied Mechanics, 37, 1031–1036.
Yang, H. T. Y., Saigal, S., Masud, A., & Kapania, R. K. (2000). A survey of recent shell finite
elements. International Journal for Numerical Methods in Engineering, 47, 101–127.
Yunus, S. M., Pawlak, T. P., & Cook, R. D. (1991). Solid elements with rotational degrees of
freedom: Part I – Hexahedron elements. International Journal for Numerical Methods in
Engineering, 31, 573–592.
Zhang, Y., & Yang, C. (2009). Recent developments in finite element analysis for laminated
composite plates. Composite and Structures, 88, 147–157.