A multilayered 3D hexahedral finite element with rotational DOFs

Authors

  • Kamel Meftah Laboratoire de Génie Energétique et Matériaux, LGEM, University of Biskra, BP 145, RP, 07000 Biskra, Algeria
  • Lakhdar Sedira Laboratoire de Génie Mécanique, LGM, University of Biskra, BP 145, RP, 07000 Biskra, Algeria
  • Wajdi Zouari LISM, EA 4695, University of Reims Champagne-Ardenne IUT de Troyes, 9 Rue de Québec, 10026 Troyes, France
  • Rezak Ayad LISM, EA 4695, University of Reims Champagne-Ardenne IUT de Troyes, 9 Rue de Québec, 10026 Troyes, France
  • Mabrouk Hecini Laboratoire de Génie Mécanique, LGM, University of Biskra, BP 145, RP, 07000 Biskra, Algeria

Keywords:

3D finite element, multilayer solid element, rotational DOFs, composite structures

Abstract

The study presents a multilayer eight-node hexahedral finite element with rotational degree of freedom to model composite laminate structures. Its formulation is based on virtual rotations of a nodal fibre within the element that enriches the displacement vector approximation. A particular attention is made to the determination of transverse deflections as well as inplane stresses. To assess the accuracy of the proposed element, several benchmarks are considered and the obtained results are compared with 3D elasticity solutions and other advanced finite elements from the literature.

Downloads

Download data is not yet available.

References

Abdullah, E., Ferrero, J. F., Barrau, J. J., & Mouillet, J. B. (2007). Development of a new finite

element for composite delamination analysis. Composites Science and Technology, 67,

–2218.

Ayad, R. (2002). Contribution à la modélisation numérique pour l’analyse des solides et des

structures, et pour la mise en forme des fluides non newtoniens. Application à des matériauxd’emballage [Contribution to the numerical modeling of solids and structures and the non-

Newtonian fluids forming process. Application to packaging materials]. Habilitation to

conduct researches, University of Reims, Reims, France. (in French).

Ayad, R., Talbi, N., & Ghomari, T. (2009). Modified discrete Mindlin hypothesises for laminated

composite structures. Composites Science and Technology, 69, 125–128.

Ayad, R., Zouari, W., Meftah, K., Zineb, T. B., & Benjeddou, A. (2013). Enrichment of linear

hexahedral finite elements using rotations of a virtual space fiber. International Journal for

Numerical Methods in Engineering, 95, 46–70.

Bambole, A., & Desai, Y. (2007). Hybrid-interface element for thick laminated composite plates.

Computers and Structures, 85, 1484–1499.

Bussamra, F., Neto, E. L., & Raimundo, D. R. Jr. (2012). Hybrid quasi-Trefftz 3-D finite elements

for laminated composite plates. Computers Structures, 92–93, 185–192.

Chen, D., Shah, D., & Chan, W. (1996). Interfacial stress estimation using least-square

extrapolation and local stress smoothing in laminated composites. Computers and Structures,

, 765–774.

Desai, Y. M., Ramtekkar, G. S., & Shah, A. H. (2003a). Dynamic analysis of laminated composite

plates using a layer-wise mixed finite element model. Composite and Structures, 59, 237–249.

Desai, Y. M., Ramtekkar, G. S., & Shah, A. H. (2003b). A novel 3D mixed finite-element model

for statics of angle-ply laminates. International Journal for Numerical Methods in Engineering,

, 1695–1716.

Feng, W., Hoa, S. V., & Huang, Q. (1997). Classification of stress modes in assumed stress fields

of hybrid finite elements. International Journal for Numerical Methods in Engineering, 40,

–4339.

Han, J., & Hoa, S. V. (1993). A three-dimensional multilayer composite finite element for stress

analysis of composite laminates. International Journal for Numerical Methods in Engineering,

, 3903–3914.

Harrison, P. N., & Johnson, E. R. (1996). A mixed variational formulation for interlaminar

stresses in thickness-tapered composite laminates. International Journal of Solids and

Structures, 33, 2377–2399.

Hu, F., Soutis, C., & Edge, E. (1997). Interlaminar stresses in composite laminates with a circular

hole. Composite and Structures, 37, 223–232.

Icardi, U., & Atzori, A. (2004). Simple, efficient mixed solid element for accurate analysis of

local effects in laminated and sandwich composites. Advances in Engineering Software, 35,

–859.

Icardi, U., & Bertetto, A. (1995). An evaluation of the influence of geometry and of material

properties at free edges and at corners of composite laminates. Computers and Structures,

, 555–571.

Kraus, H. (1967). Thin elastic shells: An introduction to the theoretical foundations and the

analysis of their static and dynamic behavior. New York, NY: John Wiley & Sons, University

of California.

Kuhlmann, G., & Rolfes, R. (2004). A hierarchic 3D finite element for laminated composites.

International Journal for Numerical Methods in Engineering, 61, 96–116.

Lessard, L. B., Schmidt, A. S., & Shokrieh, M. M. (1996). Three-dimensional stress analysis of

free-edge effects in a simple composite cross-ply laminate. International Journal of Solids

and Structures, 33, 2243–2259.

Macneal, R. H., & Harder, R. L. (1985). A proposed standard set of problems to test finite

element accuracy. Finite Elements in Analysis and Design, 1, 3–20.

Marimuthu, R., Sundaresan, M., & Rao, G. (2001). Estimation of interlaminar normal and shear

stresses by three-dimensional hexahedron element using mixed finite element formulation.

Journal of the Institution of Engineers, 82, 50–55.Marimuthu, R., Sundaresan, M., & Rao, G. (2003). Estimation of interlaminar stresses in

laminated plates subjected to transverse loading using three-dimensional mixed finite

element formulation the institution of engineers (India). Technical Journal of Aerospace

Engineering, 84, 1–8.

Meftah, K. (2013). Modélisation numérique des solides par éléments finis volumiques basés sur

le concept SFR [Numerical modeling of 3D structure by solid finite elements based upon the

SFR concept]. (Space Fiber Rotation) (PhD thesis). University of Biskra, Algeria. (in French).

Meftah, K., Ayad, R., & Hecini, M. (2013). A new 3D 6-node solid finite element based upon

the space fibre rotation concept. European Journal of Computational Mechanics, 22(1), 1–29.

Mijuca, D. (2010). On a new 3D primal-mixed finite element approach for thermal stress

analysis of multi-layered geometrically multiscale structures. Finite Elements in Analysis

and Design, 46, 299–310.

Mindlin, R. D. (1951). Influence of rotary inertia and shear on flexural motions of isotropic,

elastic plates. Journal of Applied Mechanics, 18, 31–38.

Noor, A. K., Bert, C. W., & Burton, W. S. (1996). Computational models for sandwich panels

and shells. Applied Mechanics Reviews, 49, 155–199.

Noor, A. K., Burton, W., & Peters, J. M. (1991). Assessment of computational models for

multilayered composite cylinders. International Journal of Solids and Structures, 27,

–1286.

Pagano, N. (1970). Exact solutions for rectangular bidirectional composites and sandwich

plates. Journal of Composite Materials, 4, 20–34.

Palazotto, A. N., & Dennis, S. T. (1992). Nonlinear analysis of shell structures. Washington,

DC: AIAA Series.

Pandya, B., & Kant, T. (1988). Flexural analysis of laminated composites using refined higherorder

plate bending elements. Computer Methods in Applied Mechanics and Engineering,

, 173–198.

Ramtekkar, G. S., Desai, Y. M., & Shah, A. H. (2002). Mixed finite-element model for thick

composite laminated plates. Mechanics of Advanced Materials and Structures, 9, 133–156.

Ramtekkar, G. S., Desai, Y. M., & Shah, A. H. (2003). Application of a three-dimensional

mixed finite element model to the flexure of sandwich plate. Computers and Structures, 81,

–2198.

Reddy, J. N. (1984). A simple higher-order theory for laminated composite plates. Journal of

Applied Mechanics, 51, 745–752.

Reddy, J. N. (1989). On refined computational models of composite laminates. International

Journal for Numerical Methods in Engineering, 27, 361–382.

Roy, A. K., & Sihn, S. (2001). Development of a three-dimensional mixed variational model

for woven composites. I. Mathematical formulation. International Journal of Solids and

Structures, 38, 5935–5947.

Sedira, L., Ayad, R., Sabhi, H., Hecini, M., & Sakami, S. (2012). An enhanced discrete Mindlin

finite element model using a zigzag function. European Journal of Computational Mechanics,

, 122–140.

Sihn, S., & Roy, A. K. (2001). Development of a three-dimensional mixed variational model

for woven composites. II. Numerical solution and validation. International Journal of Solids

and Structures, 38, 5949–5962.

Simo, J., Rifai, M., & Fox, D. (1990). On a stress resultant geometrically exact shell model. Part

IV: Variable thickness shells with through-the-thickness stretching. Computer Methods in

Applied Mechanics and Engineering, 81, 91–126.

Sze, K. Y., & Ghali, A. (1993). A hybrid brick element with rotational degrees of freedom.

Computational Mechanics, 12, 147–163.Van Hoa, S., & Feng, W. (1998). Hybrid finite element method for stress analysis of laminated

composites. New York, NY: Springer Science, Kluwer Academic Publishers.

Whitney, J., & Pagano, N. (1970). Shear deformation in heterogeneous anisotropic plates.

Journal of Applied Mechanics, 37, 1031–1036.

Yang, H. T. Y., Saigal, S., Masud, A., & Kapania, R. K. (2000). A survey of recent shell finite

elements. International Journal for Numerical Methods in Engineering, 47, 101–127.

Yunus, S. M., Pawlak, T. P., & Cook, R. D. (1991). Solid elements with rotational degrees of

freedom: Part I – Hexahedron elements. International Journal for Numerical Methods in

Engineering, 31, 573–592.

Zhang, Y., & Yang, C. (2009). Recent developments in finite element analysis for laminated

composite plates. Composite and Structures, 88, 147–157.

Downloads

Published

2013-05-01

How to Cite

Meftah, K., Sedira, L., Zouari, W., Ayad, R., & Hecini, M. (2013). A multilayered 3D hexahedral finite element with rotational DOFs. European Journal of Computational Mechanics, 24(3), 107–128. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/847

Issue

Section

Original Article

Most read articles by the same author(s)