An enhanced discrete Mindlin finite element model using a zigzag function
DOI:
https://doi.org/10.13052/17797179.2012.702434Keywords:
finite element, displacement discrete model, multilayer plate, zigzag functionAbstract
The present work deals with the formulation and the evaluation of a discrete finite element model for Reissner/Mindlin composite plates, including the introduction of zigzag form in order to improve plane and shear stress accuracy. The model is characterised by a piecewise linear variation of displacement, which allows to fulfil the stress continuity requirements. For this purpose, a new four-node quadrilateral enhanced finite element based on a quadratic displacement field is proposed. In the second version, it incorporates two additional zigzag terms and does not require shear correction. The element is validated across some known problems in the literature, highlighting the improvement of thickness stress distributions, by comparison with the initial model without zigzag function.
Downloads
References
Ambartsumian, S.A. (1969). Theory of anisotropic plates: Strength, Stability and Vibrations. Translated
from Russian by T. Cheron and edited by J. E. Ashton, Technomic.
Ayad, R. (2002). Contribution à la Modélisation numérique pour l’analyse des solides et des structures,
et pour la mise en forme des fluides non newtoniens. Application à des matériaux d’emballage
(HDR Thesis, University of Reims Champagne Ardenne).
Ayad, R., Dhatt, G., & Batoz, J.L. (1998). A new hybrid-mixed variational approach for Reissner–Mindlin
plates. The MiSP model. International Journal for Numerical Methods in Engineering, 42(7),
–1179.
Ayad, R., & Rigolot, A. (2002). An improved four-node hybrid-mixed element based upon Mindlin’s
plate theory. International Journal for Numerical Methods in Engineering, 55(6), 705–731.
Ayad, R., Talbi, N., & Ghomari, T. (2009). Modified discrete Mindlin hypothesises for laminated composite
structures. Composites Science and Technology, 69(1), 125–128. doi: 10.1016/j.compscitech.
10.038
Batoz, J.-L., & Tahar, M.B. (1982). Evaluation of a new quadrilateral thin plate bending element. International
Journal for Numerical Methods in Engineering, 18(11), 1655–1677. doi: 10.1002/
nme.1620181106
Carrera, E. (1996). C0 Reissner–Mindlin multilayred plate elements including zig-zag and interlaminar
stress continuity. International Journal for Numerical Methods in Engineering, 39(11), 1797–1820.
Carrera, E. (2002). Theories and finite elements for multilayered, anisotropic, composite plates and
shells. Archives of Computational Methods in Engineering, 9(2), 87–140. doi: 10.1007/bf02736649
Table 6. Normal stresses in simple supported square sandwich (f/c/f) plate, under sinusoidal load.
DMQP/ml
(88)
DMQP/ml
(1919)
DMQPz
(66)
HOZZT
(88)
PRHSDT
(88)
PFSDT
(88) Pagano
a=h ¼ 4
r1x
.7375 .73,125 1.5206 1.5158 1.4539 .8385 1.556
r2x
.588 .586 .2210 – .3181 .6708 .233
.0028 .00,286 .0004 – .0012 .0024
r1y
.2343 .235 .2494 .2495 .2522 .1565 .2595
r2y
.1875 .188 .1621 – .1631 .1252 –
.008 .008 .0066 – .0069 .0053 –
a=h ¼ 10
r1x
1.02 1.1568 1.1438 1.1453 1.0475 1.152
r2x
.796 .793 .6315 – .6193 .8380 .629
.00,215 .00,215 .00,101 – .0018 .0020 –
r1y
.107 .107 .1088 .1082 .1101 .0806 .1099
r2y
.0855 .0855 .0823 – .0832 .0645 –
.00,364 .00,364 .00,305 – .0035 .0027 –
Carrera, E., & Demasi, L. (2002). Classical and advanced multilayered plate elements based upon PVD
and RMVT. Part 1: Derivation of finite element matrices. International Journal for Numerical Methods
in Engineering, 55(2), 191–231. doi: 10.1002/nme.492
Di-Sciuva, M. (1992). Multilayered anisotropic plate models with continuous interlaminar stresses. Composite
Structures, 22(3), 149–167. doi: 10.1016/0263-8223(92)90003-u
Engblom, J.J., & Ochoa, O.O. (1985). Through-the-thickness stress predictions for laminated plates of
advanced composite materials. International Journal for Numerical Methods in Engineering, 21(10),
–1776. doi: 10.1002/nme.1620211003
Fares, M.E., & Elmarghany, M.K. (2008). A refined zigzag nonlinear first-order shear deformation theory
of composite laminated plates. Composite Structures, 82(1), 71–83. doi: 10.1016/j.compstruct.
12.007
Katili, I. (1993). A new discrete Kirchhoff–Mindlin element based on Mindlin–Reissner plate theory
and assumed shear strain fields – part II: An extended DKQ element for thick-plate bending analysis.
International Journal for Numerical Methods in Engineering, 36(11), 1885–1908. doi: 10.1002/
nme.1620361107
Lardeur, P. (1990). Développement et évaluation de deux nouveaux éléments finis de plaques et coques
composites avec influence du cisaillement transversal (PhD Thesis, University of Technology of
Compiègne, France).
Lekhnitskii, S.G. (1935). Strength calculation of composite beams, Vestnik inzhen i tekhnikov.
Mindlin, R. (1951). Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates.
Journal of Applied Mechanics, 18(1), 31–38.
Murakami, H. (1986). Laminated composite plate theory with improved in-plane responses. Journal of
Applied Mechanics, 53, 661–666.
Pagano, N.J. (1970). Exact solutions for rectangular bidirectional composites and sandwich plates. Journal
of Composite Materials, 1(4), 257. doi: 10.1016/0010-4361(70)90076-5
Rath, B.K., & Das, Y.C. (1973). Vibration of layered shells. Journal of Sound and Vibration, 28(4),
–757. doi: 10.1016/s0022-460x(73)80146-4
Reddy, J.N. (1984). Simple higher-order theory for laminated composite plates. Journal of Applied
Mechanics, Transactions ASME, 51(4), 745–752.
Reissner, E. (1943). The effect of transverse shear deformation on the bending of elasticplates. Journal
of applied Mechanics, 12, A69–A77.
Sakami S. (2008). Modélisation numérique des structures composites multicouches à l’aide d’une
approche discrète au sens de Mindlin. Le modèle DDM (Displacement Discrete Mindlin) (Doctorat
Thesis, University of Reims Champagne Ardenne).
Tafla, A., Ayad, R., & Sedira, L. (2010). A Mindlin multilayered hybrid-mixed approach for laminated and
sandwich structures without shear correction factors. Européenne de Mécanique Numérique [European
Journal of Computational Mechanics/Revue], 19(8), 725–742. doi: 10.3166/ejcm.19.725-742
Topdar, P., Sheikh, A.H., & Dhang, N. (2003). Finite element analysis of composite and sandwich plates
using a continuous inter-laminar shear stress model. Journal of Sandwich Structures and Materials,
(3), 207–231. doi: 10.1177/10996362030 05003001.
Whitney, J.M. (1969). The effect of transverse shear deformation on the bending of laminated plates.
Journal of Composite Materials, 3(3), 534–547. doi: 10.1177/002199836900300316