Proper Generalized Decomposition method for incompressible flows in stream-vorticity formulation

Authors

  • Antoine Dumon LEPTIAB Pôle Sciences et Technologie Avenue Michel Crepeau F-17042 La Rochelle cedex 1
  • Cyrille Allery LEPTIAB Pôle Sciences et Technologie Avenue Michel Crepeau F-17042 La Rochelle cedex 1
  • Amine Ammar Arts et Metiers ParisTech 2 Bd du Ronceray F-49035 Angers cedex 1

DOI:

https://doi.org/10.13052/EJCM.19.591-617

Keywords:

reduced order model, lid-driven cavity, separation of variables

Abstract

In this work, the Proper Generalized Decomposition (PGD) method will be considered in order to solve Navier-stokes equations with a stream-vorticity formulation by looking for the solution as a sum of tensor product functions. In the first stage, PGD will be applied to a model equation in order to test the capacity of the method to treat some timedependent problem. Then, we will solve the Navier-Stokes problem in the case of the liddriven cavity for different Reynolds numbers (Re = 100, 1000 and 10000). Finally, the PGD method will be compared to the standard resolution technique, both in terms of CPU time and accuracy.

Downloads

Download data is not yet available.

References

Ammar A., Chinesta F., Diez P., Huerta A., An Error Estimator for Separated Representations

of Highly Multidimensional Models, Computer Methods in Applied Mechanics and

Engineering, vol. 199, p. 1872-1880, 2010.

Ammar A., Chinesta F., Falco A.Archives of Computational Methods in Engineering, In press,

n.d.

Ammar A., Mokdad B., Chinesta F., Keunings R., A new family of solvers for some classes of

multidimensional partial differential equations encountered in kinetic theory modeling of

complex fluids , Journal of Non-Newtonian Fluid Mechanics, vol. 139, n° 3, p. 153 - 176,

a.

Ammar A., Mokdad B., Chinesta F., Keunings R., A new family of solvers for some classes of

multidimensional partial differential equations encountered in kinetic theory modelling of

complex fluids: Part II: Transient simulation using space-time separated representations ,

Journal of Non-Newtonian Fluid Mechanics, vol. 144, n° 2-3, p. 98 - 121, 2007.

Ammar A., Ryckelynck D., Chinesta F., Keunings R., On the reduction of kinetic theory models

related to finitely extensible dumbbells, J. Non-Newtonian Fluid Mech., vol. 134, p. 136-

, 2006b.

Arnold D., Liu X., Local errors estimates for finite elemnt discretizations of the Stokes equations

, Math. Model. Numer. Anal., vol. 29, p. 367 - 389, 1995.

Bruneau C.-H., Saad M., The 2D lid-driven cavity problem revisited, Computers and Fluids,

vol. 35, n° 3, p. 326 - 348, 2006.

Chinesta F., Ammar A., Joyot P., The nanometric and micrometric scales of the structure and

mechanics of materials revisited: An introduction to he challenges of fully deterministic

numerical descriptions , International Journal for Multiscale Computational Engineering,

vol. 6/3, p. 191-213, 2008a.

Chinesta F., Ammar A., Lemarchand F., Beauchene P., Boust F., Alleviating mesh constraints:

Model reduction, parallel time integration and high resolution homogenization , Computer

Methods in Applied Mechanics and Engineering, vol. 197, n° 5, p. 400 - 413, 2008b. Enriched

Simulation Methods and Related Topics.

Chudanov V. V., Popkov A. G., Churbanov A. G., Vabishchevich P. N., Makarov M. M.,

Operator-splitting schemes for the stream function-vorticity formulation, Computers and

Fluids, vol. 24, n° 7, p. 771 - 786, 1995.

Dowell E., HAll K., «Modelling of fluid-structure interaction» Annal Review of Fluids

Mechanics, vol. 33, p. 445-490, 2001.

Ghia U., Ghia K., Shin C., High-re solutions for incompressible flow using the Navier-Stokes

equations and a multigrid method, J. of Computational physics, vol. 48, p. 387 - 411, 1982.

Kim Y., Kim D. W., Jun S., Lee J. H., Meshfree point collocation method for the streamvorticity

formulation of 2D incompressible Navier-Stokes equations , Computer Methods

in Applied Mechanics and Engineering, vol. 196, n° 33-34, p. 3095 - 3109, 2007.

KressW., Nilsson J., Boundary conditions and estimates for the linearized Navier-Stokes equations

on staggered grids , Computers and Fluids, vol. 32, n° 8, p. 1093 - 1112, 2003.

Ladeveze P., Non linear computational structural mechanics : new approaches and nonincremental

methods of calculation , Mechanical engineering series, Springer;, 1999.

Ladeveze P., Passieux J.-C., Neron D., The LATIN multiscale computational method and the

Proper Generalized Decomposition , Computer Methods in Applied Mechanics and Engineering,

vol. 199, n° 21-22, p. 1287 - 1296, 2010. Multiscale Models and Mathematical

Aspects in Solid and Fluid Mechanics.

Li J., Sun W. W., Spectral method of decoupling the vorticity and stream function for the

incompressible fluid flows, Computers and Mathematics with Applications, vol. 37, n° 1,

p. 35 - 40, 1999.

Liberge E., Hamdouni A., Reduced order modelling method via proper orthogonal decomposition

(POD) for flow around an oscillating cylinder, Journal of Fluids and Structures, vol.

, n° 2, p. 292 - 311, 2010.

Lieu T., Farhat C., Lesoinne M., Reduced-order fluid/structure modeling of a complete aircraft

configuration , Computer Methods in Applied Mechanics and Engineering, vol. 195, n° 41-

, p. 5730 - 5742, 2006. John H. Argyris Memorial Issue. Part II.

Mokdad B., Pruliere E., Ammar A., Chinesta F., On the simulation of kinetic theory models of

complex fluids using the FokkerâPlanck approach, Appl. Rheol., vol. 2, p. 1 - 14, 2007.

Nouy A., A generalized spectral decomposition technique to solve a class of linear stochastic

partial differential equations , Computer Methods in Applied Mechanics and Engineering,

vol. 196, n° 45-48, p. 4521 - 4537, 2007.

Nouy A., Maitre O. P. L., Generalized spectral decomposition for stochastic nonlinear problems

, Journal of Computational Physics, vol. 228, n° 1, p. 202 - 235, 2009.

Piller M., Stalio E., Finite-volume compact schemes on staggered grids , Journal of Computational

Physics, vol. 197, n° 1, p. 299 - 340, 2004.

Placzek A., Tran D.-M., Ohayon R., Hybrid proper orthogonal decomposition formulation for

linear structural dynamics , Journal of Sound and Vibration, vol. 318, n° 4-5, p. 943 - 964,

Ramsak M., Skerget L., Hribersek M., Zunic Z., A multidomain boundary element method

for unsteady laminar flow using stream function-vorticity equations , Engineering Analysis

with Boundary Elements, vol. 29, n° 1, p. 1 - 14, 2005.

Ryckelynck D., Reduction a priori de modeles thermomecaniques, Comptes Rendus

Mecanique, vol. 330, n° 7, p. 499-505, 2002.

Ryckelynck D., A priori hyperreduction method: an adaptive approach, Journal of Computational

Physics, vol. 202, p. 346-366, 2005.

Ryckelynck D., Hermanns L., Chinesta F., Alarcon E., An efficient a priori model reduction

for boundary element models , Engineering Analysis with Boundary Elements 29, vol. 29,

p. 796-801, 2005.

Taylor C., Hood P., A numerical solution of the Navier-Stokes equations using the finite element

technique , Computers and Fluids, vol. 1, p. 73 - 100, 1973.

Tezduyar T., Liou J., Ganjoo D., Incompressible flow computations based on the vorticitystream

function and velocity-pressure formulations , Computers and Structures, vol. 35,

n° 4, p. 445 - 472, 1990. Special Issue: Frontiers in Computational Mechanics.

Tokunaga H., Tanaka T., Ichinose K., Satofuka N., Numerical solutions of incompressible flows

in multiply connected domains by the vorticity stream function formulation , Computers and

Fluids, vol. 23, n° 2, p. 241 - 249, 1994.

Verdon N., Allery C., Beghein C., Hamdouni A., Ryckelynck D., Reduced-Order Modelling for

solving linear equations and non-linear equations , Communications in Numerical Methods

in Engineering, 2009.

Downloads

Published

2010-08-06

How to Cite

Dumon, A. ., Allery, C., & Ammar, A. . (2010). Proper Generalized Decomposition method for incompressible flows in stream-vorticity formulation. European Journal of Computational Mechanics, 19(5-7), 591–617. https://doi.org/10.13052/EJCM.19.591-617

Issue

Section

Original Article