Coupling finite elements and reduced approximation bases

Authors

  • Amine Ammar Laboratoire de Rhéologie: UMR CNRS-UJF-INPG 13 rue de la Piscine, BP 53 Domaine Universitaire F-38041 Grenoble cedex 9, France
  • Etienne Pruliere EADS Corporate Foundation International Chair GeM, UMR CNRS-Ecole Centrale de Nantes, France 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France
  • Julien Férec EADS Corporate Foundation International Chair GeM, UMR CNRS-Ecole Centrale de Nantes, France 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France
  • Francisco Chinesta EADS Corporate Foundation International Chair GeM, UMR CNRS-Ecole Centrale de Nantes, France 1 rue de la Noe, BP 92101, F-44321 Nantes cedex 3, France
  • Elias Cueto I3A, Universidad de Zaragoza María de Luna, 7, E-50018 Zaragoza, Spain

DOI:

https://doi.org/10.13052/EJCM.18.445-463

Keywords:

model reduction, proper orthogonal decomposition, separated representations, finite elements

Abstract

Models encountered in computational physics and engineering, usually involve too many degrees of freedom, too many simulation time-steps, too many iterations (e.g. non-linear models, optimization or inverse identification…), or simply excessive simulation time (for example when simulation in real time is envisaged). In some of our former works different reduction techniques were developed, some of them based on the use of an adaptive proper orthogonal decomposition and the other ones based on the use of separated representations. In this paper we are analyzing the coupling between reduced basis and standard finite element descriptions.

Downloads

Download data is not yet available.

References

Ammar A., Ryckelynck R., Chinesta F., Keunings R., “On the reduction of kinetic theory

models related to finitely extensible dumbbells”, Journal of Non-Newtonian Fluid

Mechanics, 134, 2006, p. 136-147.

Ammar A., Mokdad B., Chinesta F., Keunings R., “A new family of solvers for some classes

of multidimensional partial differential equations encountered in kinetic theory modeling

of complex fluids”, Journal of Non-Newtonian Fluid Mechanics, 139, 2006, p. 153-176.

Ammar A., Mokdad B., Chinesta F., Keunings R., “A new family of solvers for some classes

of multidimensional partial differential equations encountered in kinetic theory modeling

of complex fluids. Part II: Transient simulation using space-time separated

representation”, Journal of Non-Newtonian Fluid Mechanics, 144, 2007, p. 98-121.

Chinesta F., Ammar A., Lemarchand F., Beauchene P., Boust F., “Alleviating mesh

constraints: Model reduction, parallel time integration and high resolution

homogenization”, Computer Methods in Applied Mechanics and Engineering, 197/5,

, p. 400-413.

Holmes P.J., Lumleyc J.L., Berkoozld G., Mattinglya J.C., Wittenberg R.W., “Lowdimensional

models of coherent structures in turbulence”, Physics Reports, 287, 1997.

Karhunen K., “Uber lineare methoden in der wahrscheinlichkeitsrechnung”, Ann. Acad. Sci.

Fennicae, ser. Al. Math. Phys., 37, 1946.

Krysl P., Lall S., Marsden J.E., “Dimensional model reduction in non-linear finite element

dynamics of solids and structures”, International Journal Numerical Methods in

Engineering, 51, 2001, p. 479-504.

Ladeveze P., Nonlinear computational structural mechanics, Springer, NY, 1999.

Loève M.M., “Probability theory”, The University Series in Higher Mathematics, 3rd Ed. Van

Nostrand, Princeton, NJ, 1963.

Lorenz E.N., Empirical orthogonal functions and statistical weather prediction. MIT,

Departement of Meteorology, Scientific Report N1, Statistical Forecasting Project, 1956.

A. Nouy, “Recent developments in spectral stochastic methods for the solution of stochastic

partial differential equations”, Archives of Computational Methods in Engineering,

vol. 16, n° 3, 2009, p. 251-285.

Park H.M., Cho D.H., “The Use of the Karhunen-Loève decomposition for the modelling of

distributed parameter systems”, Chemical Engineering Science, 51, p. 81-98, 1996.

Ryckelynck D., “A Priori Hyperreduction Method: an adaptive approach”, Journal of

Computational Physics, 202, 2005, p. 346-366.

Ryckelynck D., Chinesta F., Cueto E., Ammar A., “On the ‘a priori’ model reduction:

Overview and recent developments”, Archives of Computational Methods in Engineering,

State of the Art Reviews, 13/1, 2006, p. 91-128.

Sirovich L., “Turbulence and the dynamics of coherent structures part I: Coherent structures”,

Quaterly of applied mathematics, XLV, 1987, p. 561-571.

Downloads

Published

2009-06-17

How to Cite

Ammar, A. ., Pruliere, E. ., Férec, J. ., Chinesta, F. ., & Cueto, E. . (2009). Coupling finite elements and reduced approximation bases. European Journal of Computational Mechanics, 18(5-6), 445–463. https://doi.org/10.13052/EJCM.18.445-463

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>