Implémentation éléments finis du modèle hyperélastique anisotrope HGO

Authors

  • François Peyraut Laboratoire M3M, Université de Technologie de Belfort Montbéliard F-90010 Belfort cedex
  • Dominique Chamoret Laboratoire M3M, Université de Technologie de Belfort Montbéliard F-90010 Belfort cedex
  • Samuel Gomes Laboratoire M3M, Université de Technologie de Belfort Montbéliard F-90010 Belfort cedex
  • Zhi-Qiang Feng Laboratoire de Mécanique d’Evry – Université d’Evry 40 Rue du Pelvoux, F-91020 Evry

DOI:

https://doi.org/10.13052/EJCM.19.441-464

Keywords:

biomechanics, anisotropic hyperelasticity, HGO model, finite element

Abstract

Anisotropic hyperelastic constitutive laws are often used to determine strain and stress in biological soft tissues such as ligaments, tendons or arterial walls. In this paper, the implementation of the HGO model in the finite element code FER is presented. Three numerical examples are studied: homogeneous uniaxial tension test where analytical solutions are available; uniaxial tension test highlighting the anisotropic behavior (contracting and swelling of the section in two perpendicular directions); contact and impact between hand and soft biological tissues in the framework of application using a virtual mannequin generator.

Downloads

Download data is not yet available.

References

ANSYS HTML Online Documentation, Release 11.0 Documentation for ANSYS, 2007.

Balzani D., Neff P., Schröder J., Holzapfel G.A, “A polyconvex framework for soft biological

tissues. Adjustment to experimental data”, International Journal of Solids and Structures,

n° 43, 2006, p. 6052-6070.

Bathe K.J., Finite element procedures in engineering analysis, Englewood Cliffs, NJ:

Prentice-Hall, 1982.

Chamoret D., Peyraut F., Gomes S., Mahdjoub M., Chevriau S., Feng Z.-Q., « Du mannequin

numérique au calcul éléments finis – application à la modélisation en biomécanique », 11e

Colloque National AIP PRIMECA de La Plagne, 22-24 avril 2009.

De Saxcé G., Feng Z.-Q., “New inequality and functional for contact with friction: the

implicit standard material approach”, Mech. Struct. Mach., n° 19, 1991, p. 301-325.

De Saxcé G., Feng Z.-Q., “The bi-potential method: a constructive approach to design the complete

contact law with friction and improved numerical algorithms”, Math. Comput. Model, Special

issue: Recent Advances in Contact Mechanics, n° 28 (4–8), 1998, p. 225-245.

Feng Z.-Q., “2D or 3D frictional contact algorithms and applications in a large deformation

context”, Commun. Numer. Methods Eng., n° 11, 1995, p. 409-416.

Feng Z.-Q., “Some test examples of 2D and 3D contact problems involving coulomb friction

and large slip”, Math. Comput. Model. Special issue: Recent Advances in Contact

Mechanics, n° 28 (4–8), 1998, p. 469-477.

Feng Z.-Q., Cros J.-M., “FER/SUBDomain an integrated environment for finite element

analysis using object-oriented approach”, Mathematical Modelling and Numerical

Analysis, vol. 36, n° 5, 2002, p. 773-781.

FER Online Documentation, http://lmee.univ-evry.fr/~feng/FerSystem.html, 2009.

Fung Y.C., Fronek K., Patitucci P., “Pseudoelasticity of arteries and the choice of its

mathematical expression”, Am. J. Physiol., n° 237, 1979, p. 620-631.

Gasser T.C., Ogden R.W., Holzapfel G.A., “Hyperelastic modelling of arterial layers with

distributed collagen fibre orientations”, J. R. Soc. Interface, n° 3, 2006, p. 15-35.

Gomes S., Sagot J.-C., Koukam A., Leroy N., “MANERCOS, a new tool providing ergonomics

in a concurrent engineering design life cycle”, 4th Annual Scientific Conference on Web

Technology, New Media, Communications and Telematics - Theory, Methods, Tools and

Applications, EUROMEDIA 99, Munich, 25-28 April 1999, p. 237-24.

Guo Z.Y., Peng X.Q., Moran B., “A composites-based hyperelastic constitutive model for

soft tissue with application to the human annulus fibrosus” J. Mech. Phys. Solids, n° 54,

, p. 1952-1971.

Holzapfel G.A., Gasser T.C., Ogden R.W., “A new constitutive framework for arterial wall

mechanics and a comparative study of material models”, Journal of Elasticity, n° 61,

, p. 1-48.

Holzapfel G.A., “Determination of material models for arterial walls from uniaxial extension

tests and histological structure”, Journal of Theoretical Biology, 238, 2006, p. 290-302.

Newmark N.M., “A method of computation for structural dynamics”, Journal of the

Engineering Mechanics Division, ASCE, 85, 1959, p. 67-94.

Peyraut F., Renaud C., Labed N., Feng Z.-Q., “Modélisation de tissus biologiques en

hyperélasticité anisotrope – Etude théorique et approche éléments finis”, Comptes Rendus

Mécanique, vol. 337, n° 2, 2009, p. 101-106.

Schröder J., Neff P., Balzani D., “A variational approach for materially stable anisotropic

hyperelasticity”, International Journal of Solids and Structures, n° 42, 2005, p. 4352-

Scovazzi G., Love E., Shashkov M.J., “Multi-scale Lagrangian shock hydrodynamics on

Q1/P0 finite elements: Theoretical framework and two-dimensional computations”,

Computer methods in applied mechanics and engineering, n° 197, 2008, p. 1056-1079.

Spencer A.J.M., Isotropic polynomial invariants and tensor functions, Boehler, J.P. (Ed.),

Applications of Tensor Functions in Solids Mechanics, CISM Course No. 282. Springer

Verlag, 1987.

Talbi N., Résolution du contact frottant entre objets déformables en temps réel et avec retour

haptique, Thèse de Doctorat, Université d’Evry Val d’Essonne, 2008.

Weiss J.A., Maker B.N., Govindjee S., “Finite element implementation of incompressible,

transversely isotropic hyperelasticity”, Computer methods in applied mechanics and

engineering, n° 135, 1996, p. 107-128.

Downloads

Published

2010-08-06

How to Cite

Peyraut, F. ., Chamoret, D. ., Gomes, S. ., & Feng, Z.-Q. . (2010). Implémentation éléments finis du modèle hyperélastique anisotrope HGO. European Journal of Computational Mechanics, 19(4), 441–464. https://doi.org/10.13052/EJCM.19.441-464

Issue

Section

Original Article