Analyses hi· et tridimensionnelle de problemes de contact avec frottement par une methode mixte des elements finis
Keywords:
contact with friction, iterative procedure, finite element method, flexibility matrixAbstract
This paper is devoted to the analysis of the two and three dimensional frictional contact problems between deformable bodies. A mixed finite element method is developped. The method uses the condensed flexibility matrix obtained by eliminating all the nodes except those where contact likely occurs. An incremental iterative procedure is used to solve this problem. Numerical examples are carried out in three cases : 2D rigid-deformable, 2D deformable-deformable and 3D deformable-deformable. The influence of friction effects on the local stress and contact pressure along the contact surface is shown. The numerical results prove that this approach is in very good agreement with known solutions and the number of iterations and the CPU time required are very small, compared to other available methods.
Downloads
References
[ALA 88) Alart P., "Multiplicateurs augmentes et methode de Newton generalisee pour contact avec
frottement", rapport, Ecole polytechnique federale de Lausanne, 1988.
[ALA 92) Alart P. and Curnier A., "A mixed formulation for frictional contact problems prone to
Newton like methods", to be published in Comp. Meth. Appl. Mech. Engng., 1992.
[ALF 90) Al-Fahed A. M., Stavroulakis G. E. and Panagiotopoulos P.O., Form and force closure
grasping problems via linear complementarity techniques, Euromech 273, Contact
unilateral and dry friction, Montpellier, France, May 1990.
[BEN 90) Bendhia H. and Durville D., Two-dimensional modeling of contact-friction phenomena
in the blankholder area for the drawing process Euromech 273, Unilateral contact and dry
friction, Montpellier, France, May 1990.
[CHA 71) Chan S.H. and Tuba I.S., "A finite element method for contact problems of solid
bodies", Int. J. Mech. Sci., vol. 13, p.615-639, 1971.
[CHE 78) Chen C. C. and Kobayashi S., "Rigid-plastic finite element analysis of ring
compression", AMD, vol. 28, 1978.
[CUR 88) Cumier A. and Alart P., "A generalized Newton method of contact problems with
friction", J. Mec. Th. et App., 1988.
[FEN 89a] Feng Z.Q. et Touzot G., "Modelisation des grandes deformations rigide-plastiques en
presence de contact et de fissuration", rapport interne, MNM/UTC, 1989.
[FEN 89b] Feng Z.Q. , Breitkopf P. et Touzot G., "Aspects cinematiques du probleme de contact :
methode des relations lineaires", rapport interne, MNM!UTC, 1989.
[FEN 90) Feng Z.Q., "Resolution du probleme de contact unilateral par une methode de
programmation mathematique : LCP - Linear Complementarity Problem", rapport
interne, MNM/UTC, 1990.
[FEN 91) Feng Z.Q., Contribution a Ia modelisation des problemes non lineaires : contact,
plasticite et endommagement, these de doctoral, UTC, France, 1991.
[FEN 92) Feng Z. Q., De Saxce G. and Touzot G., "Numerical implementation of the implicit
standard material approach for 20 or 30 frictional contact problem", submitted to Int. J.
Mech. Sci., 1992.
[FRA 75) Francavilla A. and Zienkiewicz O.C., "A note on numerical computation of elastic
contact problems", Int. J. Num. Meth. Eng. vol. 9, p.913-924, 1975.
[FRA 89) Franchomme P., Ricard A., Oudin J. et Ravalard Y., Simulation du contact 20 dons
SYSTUS par Ia mithodt du lagrangien augment/, SlRUCOME, 1989.
[GUY 65) Guyan R.J., "On the reduction of stiffness and mass matrices", AIAA Journal, vol. 3,
p. 380, 1965.
[HIN 77) Hinton E. and Owen D.R.J., Finite element programming, Academic press, London,
[JEA 88) Jean M. and Touzot G., "Implementation of unilateral contact and dry friction in
computer codes dealing with large deformation problems", J. Theo. Appl. Mech., vol. 7,
p.l45-160, 1988.
[KIK 84) Kikuchi N. and Oden J. T., Conl4ct problems in elastostatics, Finite Elements, vo/.5
(Edited by Oden J. T. and Carey G. F.), Prentice -Hall, Englewood Qiffs, NJ, 1984.
[KLA 88] Klarbring A. and BjMtman G., "A mathematical programming approach to contact
problems with friction and varying contact surface", Computers &. Structures, vol. 30,
p. 1185-1198, 1988.
[NGU 80] Nguyen D. H. and De Saxce G., "Frictionless contact of elastic bodies by finite element
methode and mathematical programming technique", Computers &. Structures. vol. 11,
p.55-67, 1980.
[SAX 84] De Saxce G. and Nguyen D.H., "Dual analysis of frictionless problems by displacement
and equilibrium finite elements", Eng. Struct., vol. 6, p.26-32, 1984.
[SAX 90] De Saxce G., Feng Z. Q. and Touzot G., The implicit standard material approach for
coupled contact problem, Euromech 273, Unilateral contact and dry friction,
Montpellier, France, May 1990.
[SAX 91] De Saxce G. and Feng Z Q., "New inequality and functional for contact with friction: The
implicit standard material approach", Mech. of Struct. and Mach., vol. 19, n° 3, p.301-
, 1991.
[SAX 92] De Saxce G., Feng Z. Q. and Touzot G., "Rigid-plastic implicit schema for two and three
dimensional analysis of metal forming by finite element methode", to be published in
Engrg. Comp., 1992.
[SHY 89] Shyu S.C., Chang T.Y. and Saleeb A.F., "Friction contact analysis using a mixed finite
element method", Computers &. Structures, vol. 32, p.223-242, 1989.
[SIM 85] Simo J.C., Wriggers P. and Taylor R.L., "A perturbed lagrangian formulation for the
finite element solution of contact problems", Comp. Meth. Appl. Mech. Eng., vo/.50,
p.163-180, 1985.
[TSU 73] Tsuta T. and Yamaji S., Finite element analysis of contact problem, Theory and practice
in finite element structural analysis procedings of the 1973 Tokyo seminar on element
analysis, p.178-194, 1973.
[WRI 85] Wriggers P. and Simo J .C., "A note on tangent stiffness for fully nonlinear contact
problems", Comm. in Appl. Num. Meth., vol. J, p.199-203, 1985.
[ZHO 89] Zhong W.X. and Sun S.M., "A parametric quadratic programming approach to elastic
contact problems with friction", Computers&. Structures, vol. 32, p.37-43, 1989.