Un algorithme efficace pour les problèmes d’impact avec frottement

Authors

  • Zhi-Qiang Feng Laboratoire de Mécanique et d’Énergétique d’Évry Université d’Évry-Val d’Essonne 40 rue du Pelvoux F-91020 Évry
  • Jean-Michel Cros Laboratoire de Mécanique et d’Énergétique d’Évry Université d’Évry-Val d’Essonne 40 rue du Pelvoux F-91020 Évry
  • Benoît Magnain Laboratoire de Mécanique et d’Énergétique d’Évry Université d’Évry-Val d’Essonne 40 rue du Pelvoux F-91020 Évry

Keywords:

impact, energy dissipation, bipotential method, time-integration

Abstract

The bipotential method has been successfully applied for the modelling of frictional contact problems in static cases. This paper presents the application of this method for dynamic analysis of impact problems with friction. Instead of second order algorithms, a first order algorithm is applied for the numerical integration of the time-discretized equation of motion. The numerical results prove that the algorithm preserves quasi perfectly the principle of energy conservation without any regularization. In addition, it is possible to quantify the physical energy dissipation introduced by frictional effects between the solids in contact.

Downloads

Download data is not yet available.

References

[ALA 91] ALART P., CURNIER A., « A mixed formulation for frictional contact problems

prone to Newton like solution methods », Comp. Meth. Appl. Mech. Engng., vol. 92, 1991,

p. 353-375.

[ARM 98] ARMERO F., PETOCZ E., « Formulation and analysis of conserving algorithms

for frictionless dynamic contact/impact problems », Comp. Meth. Appl. Mech. Engng.,

vol. 158, 1998, p. 269-300.

[CHA 86] CHAUDHARY A. B., BATHE K. J., « A solution method for static and dynamic

analysis of three dimensional contact problems with friction », Computers and Structures,

vol. 24, 1986, p. 855-873.

[CHR 98] CHRITENSEN P. W., KLARBRING A., PANG J. S., STRÖMBERG N. N., « Formulation

and comparison of algorithms for frictional contact problems », Int. J. Num. Meth.

Engng., vol. 42, 1998, p. 145-173.

[CRI 91] CRISFIELD M. A., Non-linear finite element analysis of solid and structures, Wiley,

[DES 91] DE SAXCÉ G., FENG Z.-Q., « New inequality and functional for contact with friction

: The implicit standard material approach », Mech. Struct. & Mach., vol. 19, 1991,

p. 301-325.

[DES 98] DE SAXCÉ G., FENG Z.-Q., « The bi-potential method : a constructive approach

to design the complete contact law with friction and improved numerical algorithms »,

Mathematical and Computer Modeling, vol. 28(4-8)„ 1998, p. 225-245, Special issue :

Recent Advances in Contact Mechanics.

[FEN 95] FENG Z.-Q., « 2D or 3D frictional contact algorithms and applications in a large

deformation context », Comm. Numer. Meth. Engng., vol. 11, 1995, p. 409-416.

[FEN 98] FENG Z.-Q., « Some test examples of 2D and 3D contact problems involving Coulomb

friction and large slip », Mathematical and Computer Modeling, vol. 28(4-8), 1998,

p. 469-477, Special issue : Recent Advances in Contact Mechanics.

[FEN 00] FENG Z.-Q., « http ://gmfe16.cemif.univ-evry.fr :8080/sfeng/FerSystem.html »,

[FEN 03] FENG Z.-Q., PEYRAUT F., LABED N., « Solution of large deformation contact problems

with friction between Blatz-Ko hyperelastic bodies », Int. J. Engn. Science, vol. 41,

, p. 2213-2225.

[FEN 04] FENG Z.-Q., MAGNAIN B., CROS J.-M., JOLI P., « Energy dissipation by friction

in dynamic multibody contact problems », YAO Z.-H., YUAN M.-W., ZHONG W.-X.,

Eds., Computational Mechanics, Beijing, China, sep 2004, WCCM VI in conjunction with

APCOM04, Springer.

[HJI 04] HJIAJ M., FENG Z.-Q., DE SAXCÉ G., MRÓZ Z., « There-dimensional finite element

computations for frictional contact problems with non-associated sliding rule », Int.

J. Num. Meth. Engng., vol. 60, 2004, p. 2045-2076.

[HUG 76] HUGHES T. J. R., TAYLOR R. L., SACKMAN J. L., CURNIER A., KANOKNUKULCHAI

W., « A finite element method for a class of contact-impact problems », Comp. Meth.

Appl. Mech. Engng., vol. 8, 1976, p. 249-276.

[JEA 89] JEAN M., « Dynamics with partially elastic shocks and dry friction : double scale

method and numerical approach », 4th Meeting on unilateral problems in structural analysis,

, Capri.

[JEA 99] JEAN M., « The non-smooth contact dynamics method », Comp. Meth. Appl. Mech.

Engng., vol. 177, 1999, p. 235-257.

[KIK 88] KIKUCHI N., ODEN J. T., Contact problems in elasticity : A study of variational

inequalities and finite elements, Philadelphia : SIAM, 1988.

[KIM 96] KIM J. O., KWAK B., « Dynamic analysis of two-dimensional frictional contact by

linear complementarity problem formulation », Int. J. Solids and Structures, vol. 33, 1996,

p. 4605-4624.

[KLA 92] KLARBRING A., « Mathematical programming and augmented Lagrangian methods

for frictional contact problems », CURNIER A., Ed., Contact Mechanics Int. Symp., 1992,

PPUR.

[KLA 93] KLARBRING A., « Mathematical programming in contact problems », ALIABDALI

M., BREBBIA C., Eds., Computational methods in contact mechanics, Southampton :

Computational Mechanics Publications, 1993, p. 233-263.

[KO 92] KO S. H., KWAK B., « Frictional dynamic contact analysis using finite element nodal

displacement description », Computers & Structures, vol. 42, 1992, p. 797-807.

[LAU 97] LAURSEN T., CHAWLA V., « Design of energy conserving algorithms for frictionless

dynamic contact problems », Int. J. Num. Meth. Engn., vol. 40„ 1997, p. 863-886.

[LAU 02] LAURSEN T. A., LOVE G. R., « Improved implicit integrators for transient impact

problems geometric admissibility within the conserving framework », Int. J. Num. Meth.

Engng., vol. 53„ 2002, p. 245-274.

[PAR 89] PARISCH H. A., « Consistent tangent stiffness matrix for three-dimensional nonlinear

contact analysis », Int. J. Num. Meth. Engng., vol. 28, 1989, p. 1803-1812.

[SIM 91] SIMO J. C., WONG K. K., « Unconditionally stable algorithms for rigid body dynamics

that exactly preserve energy and momentum », Int. J. Numer. Meth. Engng., vol. 31,

, p. 19-52.

[SIM 92] SIMO J. C., LAURSEN T. A., « An augmented Lagrangian treatment of contact problems

involving friction », Computers & Structures, vol. 42„ 1992, p. 97-116.

[SIM 98] SIMO J. C., HUGHES T. J. R., Computational inelasticity, Springer-Verlag, New

York, 1998.

[TAM 90] TAMMA K. K., NAMBURU R. R., « A robust self - starting explicit computational

methodology for structural dynamic applications : architecture and representations », Int.

J. Numer. Meth. Engng., vol. 30, 1990, p. 1441-1454.

[WRI 90] WRIGGERS P., VU VAN T., STEIN E., « Finite element formulation of large deformation

impact contact problems with friction », Computers & Structures, vol. 37, 1990,

p. 319-331.

[WRI 95] WRIGGERS P., « Finite element algorithms for contact problems », Arch. Comput.

Meth. Engng., vol. 2, 1995, p. 1-49.

[WRI 02] WRIGGERS P., Computational contact mechanics, John Wiley & Sons, 2002.

[ZHO 93] ZHONG Z. H., Finite element procedures in contact-impact problems, Oxford University

Press, 1993.

[ZIE 84] ZIENKIEWICZ O. C., WOOD W. L., HINE L. W., TAYLOR R. L., « A unified set of

single step algorithms. Part 1. General formulation and application », Int. J. Num. Meth.

Engng., vol. 20, 1984, p. 1529-1552.

Downloads

Published

2005-06-08

How to Cite

Feng, Z.-Q. ., Cros, J.-M., & Magnain, B. . (2005). Un algorithme efficace pour les problèmes d’impact avec frottement. European Journal of Computational Mechanics, 14(1), 65–86. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2253

Issue

Section

Original Article