Some aspects of probabilistic modeling, identification and propagation of uncertainties in computational mechanics
DOI:
https://doi.org/10.13052/EJCM.19.25-40Keywords:
uncertainties, probabilistic modeling, uncertainties quantification, propagation of uncertainties, inverse problems, identificationAbstract
In this paper, we present some aspects relative to the types of uncertainties, the variability of real systems, the types of probabilistic approaches and of the representations for the probabilistic models of uncertainties, the construction of the probabilistic models using the maximum entropy principle. We then present the nonparametric probabilistic approach of uncertainties for elliptic problems, for 3D continuous dynamical systems with geometrical nonlinearities induced by large displacements and for low- and mediumfrequency vibroacoustics of a complex system with experimental validations. Finally, a generalized probabilistic approach of uncertainties in computational dynamics using the random matrix theory and polynomial chaos decompositions is presented.
Downloads
References
Arnst M., Clouteau D., Chebli H., Othman R., Degrande G., “ A nonparametric probabilistic
model for ground-borne vibrations in buildings”, Probabilistic Engineering Mechanics, vol.
, n° 1, p. 18-34, 2006.
Arnst M., Ghanem R., “ Probabilistic equivalence and stochastic model reduction in multiscale
analysis”, Computer Methods in Applied Mechanics and Engineering, vol. 197, p. 3584-
, 2008.
Batou A., Soize C., “ Identification of stochastic loads applied to a non-linear dynamical system
using an uncertain computational model and experimental responses”, Computational
Mechanics, vol. 43, n° 4, p. 559-571, 2009.
Beck J. L., Katafygiotis L. S., “ Updating models and their uncertainties. I: Bayesian statistical
framework”, Journal of Engineering Mechanics, vol. 124, n° 4, p. 455-461, 1998.
Bernardo J., Smith A. F. M., Bayesian Theory, John Wiley & Sons, Chichester, 2000.
Berveiller M., Sudret B., Lemaire M., “ Stochastic finite element: a non-intrusive approach by
regression”, European Journal of Computational Mechanics, vol. 15, p. 81-92, 2006.
Capiez-Lernout E., Pellissetti M., Pradlwarter H., Schueller G. I., Soize C., “ Data and model
uncertainties in complex aerospace engineering systems”, Journal of Sound and Vibration,
vol. 295, n° 3-5, p. 923-938, 2006.
Capiez-Lernout E., Soize C., “ Robust design optimization in computational mechanics”, Journal
of Applied Mechanics - Transactions of the ASME, vol. 75, n° 2, p. 021001-1 - 021001-
, 2008.
Capiez-Lernout E., Soize C., Lombard J.-P., Dupont C., Seinturier E., “ Blade manufacturing
tolerances definition for a mistuned industrial bladed disk”, Journal of Engineering for Gas
Turbines and Power, vol. 127, n° 3, p. 621-628, 2005.
Carlin B. P., Louis T. A., Bayesian Methods for Data Analysis, Third Edition, CRC Press, Boca
Raton, 2009.
Chebli H., Soize C., “ Experimental validation of a nonparametric probabilistic model of non
homogeneous uncertainties for dynamical systems”, Journal of the Acoustical Society of
America, vol. 115, n° 2, p. 697-705, 2004.
Chen C., Duhamel D., Soize C., “ Probabilistic approach for model and data uncertainties and
its experimental identification in structural dynamics: Case of composite sandwich panels”,
Journal of Sound and Vibration, vol. 294, n° 1-2, p. 64-81, 2006.
Congdon P., Bayesian Statistical Modelling, Second Edition, John Wiley & Sons, Chichester,
Cottereau R., Clouteau D., Soize C., “ Construction of a probabilistic model for impedance
matrices”, Computer Methods in Applied Mechanics and Engineering, vol. 196, n° 17-20,
p. 2252-2268, 2007.
Das S., Ghanem R., Spall J. C., “ Asymptotic sampling distribution for polynomial chaos representation
from data: a maximum entropy and fisher information approach”, SIAM Journal
on Scientific Computing, vol. 30, n° 5, p. 2207-2234, 2008.
Deodatis G., Spanos P. D., “ 5th International Conference on Computational Stochastic Mechanics”,
Special issue of the Probabilistic Engineering Mechanics, vol. 23, n° 2-3, p. 103-
, 2008.
Desceliers C., Ghanem R., Soize C., “ Maximum likelihood estimation of stochastic chaos
representations from experimental data”, International Journal for Numerical Methods in
Engineering, vol. 66, n° 6, p. 978-1001, 2006.
Desceliers C., Soize C., Cambier S., “ Non-parametric - parametric model for random uncertainties
in nonlinear structural dynamics - Application to earthquake engineering”, Earthquake
Engineering and Structural Dynamics, vol. 33, n° 3, p. 315-327, 2004.
Desceliers C., Soize C., Ghanem R., “ Identification of chaos representations of elastic properties
of random media using experimental vibration tests”, Computational Mechanics, vol.
, n° 6, p. 831-838, 2007.
Desceliers C., Soize C., Grimal Q., Haiat G., Naili S., “ A time domain method to solve transient
elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space
approximation”, Journal of Wave Motion, vol. 45, n° 4, p. 383-399, 2008.
Duchereau J., Soize C., “ Transient dynamics in structures with nonhomogeneous uncertainties
induced by complex joints”, Mechanical Systems and Signal Processing, vol. 20, n° 4,
p. 854-867, 2006.
Durand J.-F., Soize C., Gagliardini L., “ Structural-acoustic modeling of automotive vehicles
in presence of uncertainties and experimental identification and validation”, Journal of the
Acoustical Society of America, vol. 124, n° 3, p. 1513-1525, 2008.
Faverjon B., Ghanem R., “ Stochastic inversion in acoustic scattering”, Journal of the Acoustical
Society of America, vol. 119, n° 6, p. 3577-3588, 2006.
Geman S., Geman D., “ Stochastic relaxation, Gibbs distribution and the Bayesian distribution
of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. Vol PAM
I-6, n° 6, p. 721-741, 1984.
Ghanem R., Kruger R. M., “ Numerical solution of spectral stochastic finite element systems”,
Computer Methods in Applied Mechanics and Engineering, vol. 129, p. 289-303, 1996.
Ghanem R., Masri S., Pellissetti M., Wolfe R., “ Identification and prediction of stochastic
dynamical systems in a polynomial chaos basis”, Computer Methods in Applied Mechanics
and Engineering, vol. 194, n° 12-16, p. 1641-1654, 2005.
Ghanem R., Spanos P. D., Stochastic finite elements: a spectral approach, Springer-Verlag,
New York, 1991.
Guilleminot J., Soize C., Kondo D., Benetruy C., “ Theoretical framework and experimental
procedure for modelling volume fraction stochastic fluctuations in fiber reinforced composites”,
International Journal of Solid and Structures, vol. 45, n° 21, p. 5567-5583, 2008.
Hastings W. K., “ Monte Carlo sampling methods using Markov chains and their applications”,
Biometrika, vol. 109, p. 57-97, 1970.
Jaynes E. T., “ Information theory and statistical mechanics”, Physical Review, vol. 108, n° 2,
p. 171-190, 1957.
Kaipio J., Somersalo E., Statistical ans Computational Inverse Problems, Springer-Verlag, New
York, 2005.
LeMaitre O. P., Najm H. N., Ghanem R., Knio O., “ Multi-resolution analysis of Wiener-type
uncertainty propagation schemes”, Journal of Computational Physics, vol. 197, n° 2, p. 502-
, 2004.
LeMaitre O. P., Najm H. N., Pebay P. P., Ghanem R., Knio O., “ Multi-resolution-analysis
scheme for uncertainty quantification in chemical systems”, SIAM Journal on Scientific
Computing, vol. 29, n° 2, p. 864-889, 2007.
Mace R., Worden W., Manson G., “ Uncertainty in Structural Dynamics”, Special issue of the
Journal of Sound and Vibration, vol. 288, n° 3, p. 431-790, 2005.
MacKeown P. K., Stochastic Simulation in Physics, Springer-Verlag, Singapore, 1997.
Mehta M. L., Random Matrices, Revised and Enlarged Second Edition, Academic Press, New
York, 1991.
Mignolet M. P., Soize C., “ Nonparametric stochastic modeling of linear systems with prescribed
variance of several natural frequencies”, Probabilistic Engineering Mechanics, vol.
, n° 2-3, p. 267-278, 2008a.
Mignolet M. P., Soize C., “ Stochastic reduced order models for uncertain nonlinear dynamical
systems”, Computer Methods in Applied Mechanics and Engineering, vol. 197, n° 45-48,
p. 3951-3963, 2008b.
Muravyov A. A., Rizzi S. A., “ Determination of nonlinear stiffness with application to random
vibration of geometrically nonlinear structures”, Computers and Structures, vol. 81, n° 15,
p. 1513-1523, 2003.
Nouy A., “ A generalized spectral decomposition technique to solve a class of linear stochastic
partial differential equations”, Computer Methods in Applied Mechanics and Engineering,
vol. 196, n° 45-48, p. 4521-4537, 2007.
Nouy A., Maitre O. P. L., “ Generalized spectral decomposition for stochastic nonlinear problems”,
Journal of Computational Physics, vol. 228, n° 1, p. 202-235, 2009.
Ohayon R., Soize C., Structural Acoustics and Vibration, Academic Press, San Diego, London,
Pellissetti M., Capiez-Lernout E., Pradlwarter H., Soize C., Schueller G. I., “ Reliability analysis
of a satellite structure with a parametric and a non-parametric probabilistic model”,
Computer Methods in Applied Mechanics and Engineering, vol. 198, n° 2, p. 344-357,
Sampaio R., Soize C., “ On measures of non-linearity effects for uncertain dynamical systems
- Application to a vibro-impact system”, Journal of Sound and Vibration, vol. 303, n° 3-5,
p. 659-674, 2007.
Schueller G. I., “ Computational methods in stochastic mechanics and reliability analysis”,
Special issue of Computer Methods in Applied Mechanics and Engineering, vol. 194, n° 12-
, p. 1251-1795, 2005a.
Schueller G. I., “ Uncertainties in structural mechanics and analysis-computational methods”,
Special issue of Computer and Structures, vol. 83, n° 14, p. 1031-1150, 2005b.
Serfling R. J., Approximation Theorems of Mathematical Statistics, John Wiley & Sons, 1980.
Shannon C. E., “ A mathematical theory of communication”, Bell System Technology Journal,
vol. 27, n° 14, p. 379-423 & 623-659, 1948.
Soize C., The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady
State Solutions, World Scientific Publishing Co Pte Ltd, Singapore, 1994.
Soize C., “ A nonparametric model of random uncertainties on reduced matrix model in structural
dynamics”, Probabilistic Engineering Mechanics, vol. 15, n° 3, p. 277-294, 2000.
Soize C., “ Maximum entropy approach for modeling random uncertainties in transient elastodynamics”,
Journal of the Acoustical Society of America, vol. 109, n° 5, p. 1979-1996,
Soize C., “ Uncertain dynamical systems in the medium-frequency range”, Journal of Engineering
Mechanics, vol. 129, n° 9, p. 1017-1027, 2003.
Soize C., “ Random matrix theory for modeling uncertainties in computational mechanics”,
Computer Methods in Applied Mechanics and Engineering, vol. 194, n° 12-16, p. 1333-
, 2005.
Soize C., “ Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic
partial differential operators”, Computer Methods in Applied Mechanics and Engineering,
vol. 195, n° 1-3, p. 26-64, 2006.
Soize C., “ Construction of probability distributions in high dimension using the maximum entropy
principle. Applications to stochastic processes, random fields and random matrices”,
International Journal for Numerical Methods in Engineering, vol. 76, n° 10, p. 1583-1611,
a.
Soize C., “ Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic
microstructure and probabilistic analysis of representative volume element size”, Probabilistic
Engineering Mechanics, vol. 23, n° 2-3, p. 307-323, 2008b.
Soize C., “ Nonparametric probabilistic approach of uncertainties for elliptic boundary value
problem”, International Journal for Numerical Methods in Engineering, vol. 80, n° 6-7,
p. 673-688, 2009.
Soize C., “ Generalized Probabilistic approach of uncertainties in computational dynamics using
random matrices and polynomial chaos decompositions”, International Journal for Numerical
Methods in Engineering, vol. 81, n° 8, p. 939-970, 2010.
Soize C., Capiez-Lernout E., Durand J.-F., Fernandez C., Gagliardini L., “ Probabilistic model
identification of uncertainties in computational models for dynamical systems and experimental
validation”, Computer Methods in Applied Mechanics and Engineering, vol. 198,
n° 1, p. 150-163, 2008.
Soize C., Ghanem R., “ Physical systems with random uncertainties : Chaos representation
with arbitrary probability measure”, SIAM Journal On Scientific Computing, vol. 26, n° 2,
p. 395-410, 2004.
Soize C., Ghanem R., “ Reduced chaos decomposition with random coefficients of vectorvalued
random variables and random fields”, Computer Methods in Applied Mechanics and
Engineering, vol. 198, n° 21-26, p. 1926-1934, 2009.
Spall J. C., Introduction to Stochastic Search and Optimization, John Wiley, 2003.
Wiener N., “ The Homogeneous Chaos”, American Journal of Mathematics, vol. 60, n° 1,
p. 897-936, 1938.