Some aspects of probabilistic modeling, identification and propagation of uncertainties in computational mechanics

Authors

  • Christian Soize Université Paris-Est Laboratoire Modélisation et Simulation Multi-Echelle MSME UMR 8208 CNRS 5 bd Descartes, F-77454 Marne-la-Vallée, cedex 2

DOI:

https://doi.org/10.13052/EJCM.19.25-40

Keywords:

uncertainties, probabilistic modeling, uncertainties quantification, propagation of uncertainties, inverse problems, identification

Abstract

In this paper, we present some aspects relative to the types of uncertainties, the variability of real systems, the types of probabilistic approaches and of the representations for the probabilistic models of uncertainties, the construction of the probabilistic models using the maximum entropy principle. We then present the nonparametric probabilistic approach of uncertainties for elliptic problems, for 3D continuous dynamical systems with geometrical nonlinearities induced by large displacements and for low- and mediumfrequency vibroacoustics of a complex system with experimental validations. Finally, a generalized probabilistic approach of uncertainties in computational dynamics using the random matrix theory and polynomial chaos decompositions is presented.

Downloads

Download data is not yet available.

References

Arnst M., Clouteau D., Chebli H., Othman R., Degrande G., “ A nonparametric probabilistic

model for ground-borne vibrations in buildings”, Probabilistic Engineering Mechanics, vol.

, n° 1, p. 18-34, 2006.

Arnst M., Ghanem R., “ Probabilistic equivalence and stochastic model reduction in multiscale

analysis”, Computer Methods in Applied Mechanics and Engineering, vol. 197, p. 3584-

, 2008.

Batou A., Soize C., “ Identification of stochastic loads applied to a non-linear dynamical system

using an uncertain computational model and experimental responses”, Computational

Mechanics, vol. 43, n° 4, p. 559-571, 2009.

Beck J. L., Katafygiotis L. S., “ Updating models and their uncertainties. I: Bayesian statistical

framework”, Journal of Engineering Mechanics, vol. 124, n° 4, p. 455-461, 1998.

Bernardo J., Smith A. F. M., Bayesian Theory, John Wiley & Sons, Chichester, 2000.

Berveiller M., Sudret B., Lemaire M., “ Stochastic finite element: a non-intrusive approach by

regression”, European Journal of Computational Mechanics, vol. 15, p. 81-92, 2006.

Capiez-Lernout E., Pellissetti M., Pradlwarter H., Schueller G. I., Soize C., “ Data and model

uncertainties in complex aerospace engineering systems”, Journal of Sound and Vibration,

vol. 295, n° 3-5, p. 923-938, 2006.

Capiez-Lernout E., Soize C., “ Robust design optimization in computational mechanics”, Journal

of Applied Mechanics - Transactions of the ASME, vol. 75, n° 2, p. 021001-1 - 021001-

, 2008.

Capiez-Lernout E., Soize C., Lombard J.-P., Dupont C., Seinturier E., “ Blade manufacturing

tolerances definition for a mistuned industrial bladed disk”, Journal of Engineering for Gas

Turbines and Power, vol. 127, n° 3, p. 621-628, 2005.

Carlin B. P., Louis T. A., Bayesian Methods for Data Analysis, Third Edition, CRC Press, Boca

Raton, 2009.

Chebli H., Soize C., “ Experimental validation of a nonparametric probabilistic model of non

homogeneous uncertainties for dynamical systems”, Journal of the Acoustical Society of

America, vol. 115, n° 2, p. 697-705, 2004.

Chen C., Duhamel D., Soize C., “ Probabilistic approach for model and data uncertainties and

its experimental identification in structural dynamics: Case of composite sandwich panels”,

Journal of Sound and Vibration, vol. 294, n° 1-2, p. 64-81, 2006.

Congdon P., Bayesian Statistical Modelling, Second Edition, John Wiley & Sons, Chichester,

Cottereau R., Clouteau D., Soize C., “ Construction of a probabilistic model for impedance

matrices”, Computer Methods in Applied Mechanics and Engineering, vol. 196, n° 17-20,

p. 2252-2268, 2007.

Das S., Ghanem R., Spall J. C., “ Asymptotic sampling distribution for polynomial chaos representation

from data: a maximum entropy and fisher information approach”, SIAM Journal

on Scientific Computing, vol. 30, n° 5, p. 2207-2234, 2008.

Deodatis G., Spanos P. D., “ 5th International Conference on Computational Stochastic Mechanics”,

Special issue of the Probabilistic Engineering Mechanics, vol. 23, n° 2-3, p. 103-

, 2008.

Desceliers C., Ghanem R., Soize C., “ Maximum likelihood estimation of stochastic chaos

representations from experimental data”, International Journal for Numerical Methods in

Engineering, vol. 66, n° 6, p. 978-1001, 2006.

Desceliers C., Soize C., Cambier S., “ Non-parametric - parametric model for random uncertainties

in nonlinear structural dynamics - Application to earthquake engineering”, Earthquake

Engineering and Structural Dynamics, vol. 33, n° 3, p. 315-327, 2004.

Desceliers C., Soize C., Ghanem R., “ Identification of chaos representations of elastic properties

of random media using experimental vibration tests”, Computational Mechanics, vol.

, n° 6, p. 831-838, 2007.

Desceliers C., Soize C., Grimal Q., Haiat G., Naili S., “ A time domain method to solve transient

elastic wave propagation in a multilayer medium with a hybrid spectral-finite element space

approximation”, Journal of Wave Motion, vol. 45, n° 4, p. 383-399, 2008.

Duchereau J., Soize C., “ Transient dynamics in structures with nonhomogeneous uncertainties

induced by complex joints”, Mechanical Systems and Signal Processing, vol. 20, n° 4,

p. 854-867, 2006.

Durand J.-F., Soize C., Gagliardini L., “ Structural-acoustic modeling of automotive vehicles

in presence of uncertainties and experimental identification and validation”, Journal of the

Acoustical Society of America, vol. 124, n° 3, p. 1513-1525, 2008.

Faverjon B., Ghanem R., “ Stochastic inversion in acoustic scattering”, Journal of the Acoustical

Society of America, vol. 119, n° 6, p. 3577-3588, 2006.

Geman S., Geman D., “ Stochastic relaxation, Gibbs distribution and the Bayesian distribution

of images”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. Vol PAM

I-6, n° 6, p. 721-741, 1984.

Ghanem R., Kruger R. M., “ Numerical solution of spectral stochastic finite element systems”,

Computer Methods in Applied Mechanics and Engineering, vol. 129, p. 289-303, 1996.

Ghanem R., Masri S., Pellissetti M., Wolfe R., “ Identification and prediction of stochastic

dynamical systems in a polynomial chaos basis”, Computer Methods in Applied Mechanics

and Engineering, vol. 194, n° 12-16, p. 1641-1654, 2005.

Ghanem R., Spanos P. D., Stochastic finite elements: a spectral approach, Springer-Verlag,

New York, 1991.

Guilleminot J., Soize C., Kondo D., Benetruy C., “ Theoretical framework and experimental

procedure for modelling volume fraction stochastic fluctuations in fiber reinforced composites”,

International Journal of Solid and Structures, vol. 45, n° 21, p. 5567-5583, 2008.

Hastings W. K., “ Monte Carlo sampling methods using Markov chains and their applications”,

Biometrika, vol. 109, p. 57-97, 1970.

Jaynes E. T., “ Information theory and statistical mechanics”, Physical Review, vol. 108, n° 2,

p. 171-190, 1957.

Kaipio J., Somersalo E., Statistical ans Computational Inverse Problems, Springer-Verlag, New

York, 2005.

LeMaitre O. P., Najm H. N., Ghanem R., Knio O., “ Multi-resolution analysis of Wiener-type

uncertainty propagation schemes”, Journal of Computational Physics, vol. 197, n° 2, p. 502-

, 2004.

LeMaitre O. P., Najm H. N., Pebay P. P., Ghanem R., Knio O., “ Multi-resolution-analysis

scheme for uncertainty quantification in chemical systems”, SIAM Journal on Scientific

Computing, vol. 29, n° 2, p. 864-889, 2007.

Mace R., Worden W., Manson G., “ Uncertainty in Structural Dynamics”, Special issue of the

Journal of Sound and Vibration, vol. 288, n° 3, p. 431-790, 2005.

MacKeown P. K., Stochastic Simulation in Physics, Springer-Verlag, Singapore, 1997.

Mehta M. L., Random Matrices, Revised and Enlarged Second Edition, Academic Press, New

York, 1991.

Mignolet M. P., Soize C., “ Nonparametric stochastic modeling of linear systems with prescribed

variance of several natural frequencies”, Probabilistic Engineering Mechanics, vol.

, n° 2-3, p. 267-278, 2008a.

Mignolet M. P., Soize C., “ Stochastic reduced order models for uncertain nonlinear dynamical

systems”, Computer Methods in Applied Mechanics and Engineering, vol. 197, n° 45-48,

p. 3951-3963, 2008b.

Muravyov A. A., Rizzi S. A., “ Determination of nonlinear stiffness with application to random

vibration of geometrically nonlinear structures”, Computers and Structures, vol. 81, n° 15,

p. 1513-1523, 2003.

Nouy A., “ A generalized spectral decomposition technique to solve a class of linear stochastic

partial differential equations”, Computer Methods in Applied Mechanics and Engineering,

vol. 196, n° 45-48, p. 4521-4537, 2007.

Nouy A., Maitre O. P. L., “ Generalized spectral decomposition for stochastic nonlinear problems”,

Journal of Computational Physics, vol. 228, n° 1, p. 202-235, 2009.

Ohayon R., Soize C., Structural Acoustics and Vibration, Academic Press, San Diego, London,

Pellissetti M., Capiez-Lernout E., Pradlwarter H., Soize C., Schueller G. I., “ Reliability analysis

of a satellite structure with a parametric and a non-parametric probabilistic model”,

Computer Methods in Applied Mechanics and Engineering, vol. 198, n° 2, p. 344-357,

Sampaio R., Soize C., “ On measures of non-linearity effects for uncertain dynamical systems

- Application to a vibro-impact system”, Journal of Sound and Vibration, vol. 303, n° 3-5,

p. 659-674, 2007.

Schueller G. I., “ Computational methods in stochastic mechanics and reliability analysis”,

Special issue of Computer Methods in Applied Mechanics and Engineering, vol. 194, n° 12-

, p. 1251-1795, 2005a.

Schueller G. I., “ Uncertainties in structural mechanics and analysis-computational methods”,

Special issue of Computer and Structures, vol. 83, n° 14, p. 1031-1150, 2005b.

Serfling R. J., Approximation Theorems of Mathematical Statistics, John Wiley & Sons, 1980.

Shannon C. E., “ A mathematical theory of communication”, Bell System Technology Journal,

vol. 27, n° 14, p. 379-423 & 623-659, 1948.

Soize C., The Fokker-Planck Equation for Stochastic Dynamical Systems and its Explicit Steady

State Solutions, World Scientific Publishing Co Pte Ltd, Singapore, 1994.

Soize C., “ A nonparametric model of random uncertainties on reduced matrix model in structural

dynamics”, Probabilistic Engineering Mechanics, vol. 15, n° 3, p. 277-294, 2000.

Soize C., “ Maximum entropy approach for modeling random uncertainties in transient elastodynamics”,

Journal of the Acoustical Society of America, vol. 109, n° 5, p. 1979-1996,

Soize C., “ Uncertain dynamical systems in the medium-frequency range”, Journal of Engineering

Mechanics, vol. 129, n° 9, p. 1017-1027, 2003.

Soize C., “ Random matrix theory for modeling uncertainties in computational mechanics”,

Computer Methods in Applied Mechanics and Engineering, vol. 194, n° 12-16, p. 1333-

, 2005.

Soize C., “ Non Gaussian positive-definite matrix-valued random fields for elliptic stochastic

partial differential operators”, Computer Methods in Applied Mechanics and Engineering,

vol. 195, n° 1-3, p. 26-64, 2006.

Soize C., “ Construction of probability distributions in high dimension using the maximum entropy

principle. Applications to stochastic processes, random fields and random matrices”,

International Journal for Numerical Methods in Engineering, vol. 76, n° 10, p. 1583-1611,

a.

Soize C., “ Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic

microstructure and probabilistic analysis of representative volume element size”, Probabilistic

Engineering Mechanics, vol. 23, n° 2-3, p. 307-323, 2008b.

Soize C., “ Nonparametric probabilistic approach of uncertainties for elliptic boundary value

problem”, International Journal for Numerical Methods in Engineering, vol. 80, n° 6-7,

p. 673-688, 2009.

Soize C., “ Generalized Probabilistic approach of uncertainties in computational dynamics using

random matrices and polynomial chaos decompositions”, International Journal for Numerical

Methods in Engineering, vol. 81, n° 8, p. 939-970, 2010.

Soize C., Capiez-Lernout E., Durand J.-F., Fernandez C., Gagliardini L., “ Probabilistic model

identification of uncertainties in computational models for dynamical systems and experimental

validation”, Computer Methods in Applied Mechanics and Engineering, vol. 198,

n° 1, p. 150-163, 2008.

Soize C., Ghanem R., “ Physical systems with random uncertainties : Chaos representation

with arbitrary probability measure”, SIAM Journal On Scientific Computing, vol. 26, n° 2,

p. 395-410, 2004.

Soize C., Ghanem R., “ Reduced chaos decomposition with random coefficients of vectorvalued

random variables and random fields”, Computer Methods in Applied Mechanics and

Engineering, vol. 198, n° 21-26, p. 1926-1934, 2009.

Spall J. C., Introduction to Stochastic Search and Optimization, John Wiley, 2003.

Wiener N., “ The Homogeneous Chaos”, American Journal of Mathematics, vol. 60, n° 1,

p. 897-936, 1938.

Downloads

Published

2010-08-06

How to Cite

Soize, C. . (2010). Some aspects of probabilistic modeling, identification and propagation of uncertainties in computational mechanics. European Journal of Computational Mechanics, 19(1-3), 25–40. https://doi.org/10.13052/EJCM.19.25-40

Issue

Section

Original Article