Analyse vibratoire par sous-structuration avec modèle non paramétrique d’incertitudes aléatoires non homogènes
Keywords:
non-homogeneous random uncertainties, nonparametric model, dynamic substructuringAbstract
In linear vibration analysis, numerical predictions of complex structures modelled by the finite element method can be improved by taking into account the random uncertainties due to modelling and model errors. Usually, the parametric methods are used to take into account the uncertainties due to modelling errors. Recently, a nonparametric method has been introduced and allows the homogeneous random uncertainties due to modelling and model errors to be taken into account. In this paper, one presents an extension of this theory for the case of non-homogeneous random uncertainties by using the nonparametric approach and the Craig & Bampton dynamic substructuring. A numerical example is presented.
Downloads
References
Chebli H., Soize C., Une nouvelle approche de la modélisation des incertitudes de modélisation
basée sur le principe du maximumd’entropie, en sous-structuration dynamique des structures,
pour le domaine des basses fréquences, Actes du Cinquième Colloque National en Calcul
des Structures, Giens (Var), 15-18 mai 2001, p. 967-974.
Ciarlet P.G., Mathematical Elasticity, Vol. I : Three-Dimensional Elasticity, North-Holland,
Amsterdam, 1988.
Craig R.R., Bampton M.M.C., Coupling of substructures for dynamic analysis, AIAA Journal,
, 1968, p. 1313-1319.
Dautray R., Lions J.-L., Mathematical Analysis and Numerical Methods for Science and technology,
Springer-Verlag, Berlin, 1992.
Ghanem R.G., Spanos P.D., Stochastic Finite Elements : A Spectral Approach, Springer-Verlag,
New York, 1991.
Haug E.J., Choi K.K., Komkov V., Design Sensitivity Analysis of Structural Systems, Academic
Press, 1986.
Ibrahim R.A., Structural dynamics with parameters uncertainties, Appl. Mech. Rev., 40(3), 1987,
p. 309-328.
Iwan W.D., Jensen H., On the dynamical response of continuous systems including model
uncertainty, Transactions of ASME, 60, 1993, p. 484-490.
Jaynes E.T., Information theory and statistical mechanics, Physical Review, 106(4), 1957, p.
-630 & 108(2), 1957, p. 171-190.
Kleiber M., Tran D.H., Hien T.D., The Stochastic Finite Element Method, John Wiley and Sons,
Lee C., Singh R., Analysis of discrete vibratory systems with parameter uncertainties. Part II :
Impulse response, Journal of Sound and Vibration, 174(3), 1994, p. 395-412.
Lin Y.K., Cai G.Q., Probabilistic Structural Dynamics, McGraw-Hill, New York, 1995.
Liu W.K., Belytschko T., Mani A., Random field finite elements, International Journal of Numerical
Methods in Engineering, 23, 1986, p. 1832-1845.
Ohayon R., Soize C., Structural Acoustics and Vibration, Academic Press, San Diego, London,
Shannon C.E., A mathematical theory of communication, Bell System Tech. J., 27, 1948, p.
-423 & p. 623-659.
Soize C.,A nonparametric model of random uncertainties for reduced matrix models in structural
dynamics, Probabilistic Engineering Mechanics, 15(3), 2000, p. 277-294.
Soize C., Maximum entropy approach for modelling random uncertainties in transient elastodynamics,
J. Acoust. Soc. Am., 109(5), 2001, p. 1979-1996.
Soize C., Chebli H., Random uncertainties model in dynamic substructuring using a nonparametric
probabilistic model, ASCE Journal of Engineering Mechanics, (Submitted in May
.
Soong T.T., Random Differential Equations in Science and Engineering, Academic Press, New
York, 1973.
Spanos P.D.,Ghanem R.G., Stochastic finite element expansion for random media, ASCE Journal
of Engineering Mechanics, 115(5), 1989, p. 1035-1053.
Spanos P.D., Zeldin B.A., Galerkin sampling method for stochastic mechanics problems, Journal
of Engineering Mechanics, 120(5), 1994, p. 1091-1106.
Shinozuka M., Deodatis G., Response variability of stochastic finite element systems, Journal
of Engineering Mechanics, 114(3), 1988, p. 499-519.
Vanmarcke E., Grigoriu M., Stochastic finite element analysis of simple beams, Journal of
Engineering Mechanics, 109(5), 1983, p. 1203-1214.
Zienkiewicz O.C., Taylor R.L., The finite element method, (4th edition), McGraw-Hill, New-
York, 1989.