Reduced-order modeling by POD-multiphase approach for fluid-structure interaction
DOI:
https://doi.org/10.13052/EJCM.19.41-52Keywords:
reduced order modeling, fluid structure interaction, proper orthogonal decomposition (POD), multiphase formulationAbstract
This paper describes the Reduced Order Modeling (ROM) for fluid rigid body interaction problem and discusses Proper Orthogonal Decomposition (POD) utilisation. The principal difficulty for using POD being the moving domains, a referenced fixed domain has been introduced. The POD has been applied for the velocity field obtained on the fixed domain. Then a method to reduce dynamical system for rigid body fluid interaction has been developed. This method consists in treating the entire fluid-solid domain as a fluid. The rigid body has then been considered as a fluid, by using a high viscosity which can play the role of a penalisation factor of the rigidity constraint. The fluid flow problem is then formulated on the reference domain and POD modes have been used in the weak formulation.
Downloads
References
Allery C., Contribution à l’identification des bifurcations et à l’ étude des écoulements fluides
par des systémes d’ordre faible (POD), PhD thesis, Université de Poitiers, 2002.
Allery C., Béghein C., Hamdouni A., “ Applying proper orthogonal decomposition to the computation
of particle dispersion in a two-dimensional ventilated cavity”, Communications in
Nonlinear Science and Numerical Simulation, vol. 10, n° 8, p. 907-920, 2005.
Anttonen J. S. R., King P. I., Beran P. S., “ POD-based reduced-order models with deforming
grids”, Mathematical and Computer Modelling, vol. 38, n° 1-2, p. 41-62, 2003.
Glowinski R., Pan T. ., Hesla T. I., Joseph D. D., Periaux J., “ A distributed lagrange multiplier/
fictitious domain method for flows around moving rigid bodies: Application to particulate
flow”, International Journal for Numerical Methods in Fluids, vol. 30, n° 8, p. 1043-
, 1999.
Liberge E., Réduction de modéle par POD-Galerkin pour les problèmes d’Interaction Fluide
Structure (Reduced Order Modeling by POD-Galerkin method in fluid-structure Interaction),
PhD thesis, La Rochelle University, 2008.
Liberge E., Benaouicha M., Hamdouni A., “ Proper Orthogonal Decomposition investigation in
Fluid Structure Interaction”, European Journal of Computational Mechanics, vol. 16/3-4,
p. 401-418, 2007.
Liberge E., Benaouicha M., Hamdouni A., “ Low order dynamical system for fluid rigid body
interaction problem using POD method”, Int. Jnl. of Multiphysics, vol. 2, n° 1, p. 59-81,
Lieu T., Farhat C., Lesoinne M., “ Reduced-order fluid/structure modeling of a complete aircraft
configuration”, Computer Methods in Applied Mechanics and Engineering, vol. 195, n° 41-
, p. 5730-5742, 2006.
Lumley J., “ The structure of inhomogeneous turbulent flows”, in A. Yaglom, Tararsky (eds),
Atmospheric Turbulence and Radio Wave Propagation, Nauka Press, Moscow, p. 166-178,
Patankar N., Singh P., Joseph D., Glowinski R., Pan T.-W., “ A new formulation of the distributed
Lagrange multiplier/fictitious domain method for particulate flows”, International
Journal of Multiphase Flows, vol. 26, p. 1509-1524, 2000.
Perrin R., Braza M., Cid E., Cazin S., Sevrain A., Strelets M., Shur M., Hoarau Y., Barthet A.,
Harran G., Moradei F., “ 3D circular cylinder”, Notes on Numerical Fluid Mechanics, vol.
, p. 299-312, 2006.
Peskin C. S., “ Flow patterns around heart valves: a digital computer method for solving the
equations of motion”, IEEE Transactions on Biomedical Engineering, vol. BME-20, n° 4,
p. 316-317, 1973.
Sirovich L., “ Turbulence and the dynamics of coherent structures, Part I : Coherent strucures;
Part II : Symmetries and transformations; Part III : Dynamics and scaling”, Quarterly of
Applied Mathematics, vol. 45(3), p. 561-590, 1987.
Utturkar Y., Zhang B., Shyy W., “ Reduced-order description of fluid flow with moving boundaries
by proper orthogonal decomposition”, International Journal of Heat and Fluid Flow,
vol. 26, n° 2, p. 276-288, 2005.