Proper orthogonal decomposition investigation in fluid structure interaction

Authors

  • Erwan Liberge LEPTAB, Université de la Rochelle, Avenue Michel Crépeau F-17042 La Rochelle cedex 1 and EIGSI, 26, rue de Vaux de Foletier F-17041 La Rochelle cedex 1
  • Mustapha Benaouicha LEPTAB, Université de la Rochelle, Avenue Michel Crépeau F-17042 La Rochelle cedex 1 and EIGSI, 26, rue de Vaux de Foletier F-17041 La Rochelle cedex 1
  • Aziz Hamdouni LEPTAB, Université de la Rochelle, Avenue Michel Crépeau F-17042 La Rochelle cedex 1

DOI:

https://doi.org/10.13052/REMN.16.401-418

Keywords:

POD, fluid structure interaction, moving boundaries, reduced model

Abstract

This paper describes Reduced Order Modeling (ROM) in Fluid Structure Interaction (FSI) and discusses Proper Orthogonal Decomposition (POD) utilization. The ROM method was selected because its performance in fluid mechanics. The principal problems of its application in FSI are due the space character of the modes resulting from the POD whereas domains are mobile. To use POD in moving domain, a charateristic function of fluid is introduced in order to work on a fixed rigid domain, and the global velocity (fluid and structure) is studied. The POD modes efficiency is tested to reconstruct velocity field in one and two-dimensional FSI case. Then reducing dynamic system using POD is introduced in moving boundaries problem. In addition, the one dimensional case of Burgers equation coupled with spring equation is tested.

Downloads

Download data is not yet available.

References

Abouri D., Parry A., Hamdouni A., “ Stable fluid rigid body interaction algorithm : application

to industrial problems”, 8th International Symposium on Emerging Technologies for Fluids,

Structures, and Fluid-Structure Interaction, ASME/JSME, San Diego California USA,

p. 25-29, July, 2004.

Aubry N., Holmes P., Lumley J., Stone E., “ The dynamics of coherent structures in the wall

region of a turbulent boundary layer”, Journal of Fluid Mechanics, vol. 192, p. 115-173,

Baker M., Mingori D., Goggin P., “ Approximate subspace iteration for constructing internally

balanced reduced order model of unsteady aerodynamic systems”, AIAA Paper, 1996.

Cazemier W., Verstappen R., Veldman A., “ Proper orthogonal decomposition and lowdimensional

models for driven cavity”, Physics of fluids, vol. 10.7, p. 1685-1699, 1998.

CEA, www-cast3m.cea.fr, Technical report, CEA, 2005.

Chevalier D., “ Groupe de Lie et mécanique des systèmes de corps rigides”, MacGraw-Hill,

Chevalier D., “ Lie groups and multibody Dynamics formalism”, EUROMECH, Prague, 1994.

Donea J., “ Arbitrary Lagrangian-Eulerian Methods”, Encyclopedia of Computational

Mecanics, 2004.

Dowell E. H., Hall, Kenneth C., “ Modelling of Fluid-Structure Interaction”, Annuals Review

of Fluid Mechanics, vol. 33, p. 445-90, 2001.

Epureanu B. I., Tang L. S., Païdoussis M. P., “ Coherent structures and their influence on the

dynamics of aeroelastic panels”, International Journal of Non-Linear Mechanics, vol. 17,

n° 6, p. 977-991, 2004.

Hamdouni A., Taibi N., “ Kane’s formalism and Lie group theory”, Mechanics Research Communications,

vol. 25, n° 4, p. 385-393, 1998.

Hemon P., Santi F., “ Applications of biorthogonal decompositions in fluid-structure interactions”,

Journal of fluids and Structures, vol. 17, p. 1123-1143, 2003.

Karpel M., “ Design for active flutter suppression and gust alleviation using state-space

aeroelastic modelling”, J. Aircraft, vol. 19, n° 3, p. 221-27, 1982.

Lumley J., “ The structure of inhomogeneous turbulent flows”, Atmospheric Turbulence and

Radio Wave Propagation, vol. In A.M. Yaglom and Tararsky, p. 166-178, 1967.

Mahajan A., BakhleM., Dowell E., “ A new method for aeroelastic stability analysis of cascades

using nonlinear, time marching CFD solvers”, AIAA Paper, 1994.

Nomura T., Hughes T., “ An arbitrary Lagrangian-Eulerian finite element method for interaction

of fluid and rigid body”, Computer Methods in Applied Mechanics and Engineering, vol.

, p. 115-138, 1992.

Podvin B., “ On the adequacy of the ten-dimensional model for the wall layer”, Phys. Fluids,

vol. 13, p. 210-224, 2001.

Romanowski M., Dowell E., “ Reduced order Euler equation for unsteady aerodynamics flow:

numerical techniques”, AIAA Paper, 1996.

Rule J., Cox D., Clark R., “ Aerodynamic model reduction through balanced realisation”, AIAA

J., 2000.

Sarkar A., Paidoussis M. P., “ A Compact Limit Cycle Oscillation Model for a Cantilevered

conveying Fluid”, Journal of Fluids and Structures, vol. 17, p. 525-535, 2003.

Sarkar A., Paidoussis M. P., “ A cantilever conveying fluid: coherent modes versus beam

modes”, International Journal of Non-Linear Mechanics, vol. 39, n° 3, p. 467-481, 2004.

Sarrate J., Huerta A., Donea J., “ Arbitrary Lagrangian-Eulerian formulation for fluid-rigid

body interaction”, Computer Methods in Applied Mechanics and Engineering, vol. 190,

n° 6, p. 3171-3188, 2001.

Sirovich L., Ball K., Keefe L., “ Planes waves and structure in turbulent channel flow”, Physics

of fluids A2, vol. 12, p. 2217-2226, 1990.

Sirovitch L., “ Turbulence and the dynamics of coherent structures, Part I : Coherent strucures,

Part II : Symmetries and transformations, Part III : Dynamics and scaling”, Quarterly of

Applied Machanics, vol. 45, n° 3, p. 561-590, 1987.

Trindade M. A., Wolter C., Sampaio R., “ Karhunen-Loève decomposition of coupled axial/

bending vibrations of beams subject to impacts”, Journal of Sound and Vibration, vol.

, n° issues 3-5, p. 1015-1036, 2005.

Zhang B., Lian T., Shyy W., “ Proper orthogonal decomposition for three-dimensional membrane

wing aerodynamics”, AIAA Paper, vol. 3917, p. 1-15, 2003.

Downloads

Published

2007-08-15

How to Cite

Liberge, E. ., Benaouicha, M. ., & Hamdouni, A. . (2007). Proper orthogonal decomposition investigation in fluid structure interaction. European Journal of Computational Mechanics, 16(3-4), 401–418. https://doi.org/10.13052/REMN.16.401-418

Issue

Section

Original Article