Automatic refinement and efficient solver for non linear dynamic structural problems
DOI:
https://doi.org/10.13052/EJCM.19.141-152Keywords:
automatic refinement, error indicators, multigrid, plasticity, dynamicsAbstract
This paper presents an adaptive strategy dedicated to non-linear transient dynamic problems. The spatial mesh is optimized to ensure the accuracy of the solution. Beginning from a coarse mesh, an error indicator is used to estimate the discretization error and new elements are created where the prescribed accuracy is not reached. A localized multigrid solver is used and the strategy is applied recursively until the local mesh size ensures that the discretization error is less than the prescribed accuracy. The spatial mesh is recreated at each time step.
Downloads
References
Abedi R., Haber R., Thite S., Erickson J., “ An h-adaptive Spacetime-Discontinuous Galerkin
Method for Linearized Elastodynamics”, European Journal of Computational Mechanics,
vol. 15, n° 6, p. 619-642, 2006.
Babuska I., “ A posteriori error estimates for the finite element method”, International Journal
for Numerical Methods in Engineering, vol. 12, n° 10, p. 1597-1615, 1978.
Belytschko T., Liu W. K., Moran B., Non linear finite elements for continua and structures,
Wiley, New York, 2005.
Brandt A., “ Multilevel Adaptive Solutions to boundary value problems”, Mathematics of Computation,
vol. 31, n° 138, p. 333-390, 1977.
Cavin P., Gravouil A., Lubrecht A. A., Combescure A., “ Automatic energy conserving spacetime
refinement for linear dynamic structural problems”, International Journal for Numerical
Methods in Engineering, vol. 64, n° 3, p. 304-321, 2005.
Dureisseix D., Bavestrello H., “ Information transfer between incompatible finite element
meshes: Application to coupled thermo-viscoelasticity”, Computer Methods in AppliedMechanics
and Engineering, vol. 195, n° 44-47, p. 6523 - 6541, 2006.
Ekevid T., Kettil P., Wiberg N. E., “ Adaptive multigrid for finite element computations in
plasticity”, Computers and Structures, vol. 82, n° 28, p. 2413 - 2424, 2004.
Fish J., Pandheeradi M., Belsky V., “ An efficient multilevel solution scheme for large scale
non-linear systems”, International Journal for Numerical Methods in Engineering, vol. 38,
n° 10, p. 1597-1610, 1995.
Kacou S., Parsons I. D., “ A parallel multigrid method for history-dependent elastoplacticity
computations”, Computer Methods in Applied Mechanics and Engineering, vol. 108, n° 1-
, p. 1-21, 1993.
Ladeveze P., Pelle J. P., La maitrise du calcul en mecanique lineaire et non lineaire, Hermes
Sciences Publications, Paris, 2001.
Mahjoubi N., Gravouil A., Combescure A., “ Coupling subdomains with heterogeneous time
integrators and incompatible time steps”, Computational Mechanics, vol. 44, n° 6, p. 825-
, 2009.
Simo J. C., Hughes T. J. R., Computational inelasticity, Springer-Verlag, New York, 2000.
Venner C. H., Lubrecht A. A.,Multilevel methods in lubrification, Tribology Series 37; Elsevier,
Amsterdam, 2000.
Verpeaux P., Charras T., Millard A., Castem 2000 guide du developpement, Rapport dmt, Commissariat
à l’Energie Atomique, 1991.
Wiberg N. E., Li X., “ Adaptive finite element procedures for linear and non-linear dynamics”,
International Journal for Numerical Methods in Engineering, vol. 46, n° 10, p. 1781-1802,
Zhu J. Z., Zienkiewicz O. C., “ Adaptive techniques in the finite element method”, Communications
in Applied Numerical Methods, vol. 4, n° 2, p. 197-204, 1988.