Automatic refinement and efficient solver for non linear dynamic structural problems

Authors

  • Ewen Biotteau Université de Lyon, CNRS, INSA Lyon LaMCoS - UMR 5259, F-69621, Villeurbanne
  • Anthony Gravouil Université de Lyon, CNRS, INSA Lyon LaMCoS - UMR 5259, F-69621, Villeurbanne
  • Antonius Lubrecht Université de Lyon, CNRS, INSA Lyon LaMCoS - UMR 5259, F-69621, Villeurbanne
  • Alain Combescure Université de Lyon, CNRS, INSA Lyon LaMCoS - UMR 5259, F-69621, Villeurbanne

DOI:

https://doi.org/10.13052/EJCM.19.141-152

Keywords:

automatic refinement, error indicators, multigrid, plasticity, dynamics

Abstract

This paper presents an adaptive strategy dedicated to non-linear transient dynamic problems. The spatial mesh is optimized to ensure the accuracy of the solution. Beginning from a coarse mesh, an error indicator is used to estimate the discretization error and new elements are created where the prescribed accuracy is not reached. A localized multigrid solver is used and the strategy is applied recursively until the local mesh size ensures that the discretization error is less than the prescribed accuracy. The spatial mesh is recreated at each time step.

Downloads

Download data is not yet available.

References

Abedi R., Haber R., Thite S., Erickson J., “ An h-adaptive Spacetime-Discontinuous Galerkin

Method for Linearized Elastodynamics”, European Journal of Computational Mechanics,

vol. 15, n° 6, p. 619-642, 2006.

Babuska I., “ A posteriori error estimates for the finite element method”, International Journal

for Numerical Methods in Engineering, vol. 12, n° 10, p. 1597-1615, 1978.

Belytschko T., Liu W. K., Moran B., Non linear finite elements for continua and structures,

Wiley, New York, 2005.

Brandt A., “ Multilevel Adaptive Solutions to boundary value problems”, Mathematics of Computation,

vol. 31, n° 138, p. 333-390, 1977.

Cavin P., Gravouil A., Lubrecht A. A., Combescure A., “ Automatic energy conserving spacetime

refinement for linear dynamic structural problems”, International Journal for Numerical

Methods in Engineering, vol. 64, n° 3, p. 304-321, 2005.

Dureisseix D., Bavestrello H., “ Information transfer between incompatible finite element

meshes: Application to coupled thermo-viscoelasticity”, Computer Methods in AppliedMechanics

and Engineering, vol. 195, n° 44-47, p. 6523 - 6541, 2006.

Ekevid T., Kettil P., Wiberg N. E., “ Adaptive multigrid for finite element computations in

plasticity”, Computers and Structures, vol. 82, n° 28, p. 2413 - 2424, 2004.

Fish J., Pandheeradi M., Belsky V., “ An efficient multilevel solution scheme for large scale

non-linear systems”, International Journal for Numerical Methods in Engineering, vol. 38,

n° 10, p. 1597-1610, 1995.

Kacou S., Parsons I. D., “ A parallel multigrid method for history-dependent elastoplacticity

computations”, Computer Methods in Applied Mechanics and Engineering, vol. 108, n° 1-

, p. 1-21, 1993.

Ladeveze P., Pelle J. P., La maitrise du calcul en mecanique lineaire et non lineaire, Hermes

Sciences Publications, Paris, 2001.

Mahjoubi N., Gravouil A., Combescure A., “ Coupling subdomains with heterogeneous time

integrators and incompatible time steps”, Computational Mechanics, vol. 44, n° 6, p. 825-

, 2009.

Simo J. C., Hughes T. J. R., Computational inelasticity, Springer-Verlag, New York, 2000.

Venner C. H., Lubrecht A. A.,Multilevel methods in lubrification, Tribology Series 37; Elsevier,

Amsterdam, 2000.

Verpeaux P., Charras T., Millard A., Castem 2000 guide du developpement, Rapport dmt, Commissariat

à l’Energie Atomique, 1991.

Wiberg N. E., Li X., “ Adaptive finite element procedures for linear and non-linear dynamics”,

International Journal for Numerical Methods in Engineering, vol. 46, n° 10, p. 1781-1802,

Zhu J. Z., Zienkiewicz O. C., “ Adaptive techniques in the finite element method”, Communications

in Applied Numerical Methods, vol. 4, n° 2, p. 197-204, 1988.

Downloads

Published

2010-08-06

How to Cite

Biotteau, E. ., Gravouil, A. ., Lubrecht, A. ., & Combescure, A. . (2010). Automatic refinement and efficient solver for non linear dynamic structural problems. European Journal of Computational Mechanics, 19(1-3), 141–152. https://doi.org/10.13052/EJCM.19.141-152

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>