A delayed damage model for the prediction of dynamic fracture experiments

Application on metallic structures

Authors

  • Arnaud Suffis Laboratoire d’Etude de Dynamique Commissariat a l’Energie Atomique - Saclay F-91191 Gif-Sur-Yvette cedex
  • Alain Combescure LaMCoS INSA-Lyon UMR CNRS 5259 18-20 Allée des sciences F-69621 Villeurbanne
  • Pierre Chevrier Laboratoire de Physique et de Mecanique des Materiaux Universite de Metz Ile de Saulcy, F-57045 Metz cedex 01

DOI:

https://doi.org/10.13052/REMN.16.601-625

Keywords:

identification, delayed damage, plate impact, spalling, finite element, numerical localization

Abstract

A delayed damage model was recently introduced to avoid artificial localization and mesh dependence in a softening material during a finite element analysis. This model is also interesting for transient applications because it requires only local information to predict damage and plastic strain rates. The physical idea behind this model is that the void growth rate cannot be infinite and hence the damage rate must be bounded. This paper shows that such a model does not require artificial numerical parameters and can be identified using classical spall fracture experiments. It was applied successfully to experiments performed on two aluminum alloys and one titanium alloy. The identification of the delayed damage parameters is presented. The model is applied to a simple numerical experiment which shows clearly that it avoids artificial numerical localization.

Downloads

Download data is not yet available.

References

Achon P., Comportement et tenacité d’alliages d’aluminium à haute resistance, PHD Thesis,

Ecole Nationale Supérieure des Mines de Paris, Centre des Matériaux, 1994.

Allix O. et al., “A delay damage meso-model for prediction of localisation and fracture of

laminates subjected to high rates loading”, ECCM 99 proceedings.

Chaboche J.L. et al., Mécanique des matériaux solides, Dunod, 1996.

Chevrier P. et al., Automatisation et informatisation du fonctionnement d’un canon à gaz

haute performance, et étude de l’endommagement dynamique d’un alliage d’aluminium

soumis à une onde plate induite par un impact plaque sur plaque, Final eng. report, Metz

University, 1994.

Chevrier P., “Discussion of fracture criteria in spall mechanics”, Engng. Trans., vol 45, n° 1,

, p. 47-70.

Chevrier P., Mécanique et méso-mécanique de l’écaillage, essais expérimentaux et critères de

rupture : étude d’un alliage d’aluminium et d’un acier de blindage, PHD Thesis,

Université de Metz, Laboratoire de Physique et Mécanique des Matériaux de Metz, 1998.

Chevrier P. et al., “Spall fracture: mechanical and microstructural aspects”, Eng. Fract.

Mech., vol. 63, 1999, p. 273-294.

Curran D.R., Dynamic failure of solids, Physics reports, vol. 147, 1987, p. 253-388.

Deu J.F. et al., “Delayed-damage modelling for fracture prediction of laminated composites

under dynamic loading”, Engng. Trans., vol. 45, n° 1, 1997, p. 29-46.

EuroPlexus, A computer program for the finite element simulation of fluid-structure systems

under dynamic loading, User’s manual, CEA Saclay, CEA/DEN/SEMT/DYN, 2002.

Gurson A.L., “Continuum theory of ductile rupture by void nucleation and growth: Part I -

Yied criteria and flow rules for porous ductile media”, J. of the Mech. and Phys. of Sol.,

vol. 17, 1977, p. 201-217.

Hanim S. et al., “Numerical study of spalling in an aluminium alloy 7020-T6”, Int. J. of Imp.

Eng., vol. 22, 1999, p. 649-673.

Ikkurthi V. R., “Use of different damage models for simulating impact-driven spallation in

metal plates”, Int. J. of Impact Engineering, vol. 47, n° 11, 2004, p. 4814-4824.

Klepaczko J.R., “A practical stress-strain-strain rate-temperature constitutive relation of the

power form”, J. Mech. Working Technology, vol. 15, 1987, p. 143-166.

Ladevèze P., “A damage computational method for composite structures”, Computers and

Structures, vol. 44, 1992, p. 79-87.

Ladevèze P. et al., “A mesomodel for localisation and damage computation in laminates”,

Comput. Meth. Appl. Mech. Engrg., vol. 183, 2000, p. 105-122.

Lemaitre J., A course on damage mechanics, Springer, Paris, 1996.

Seaman L., “Dynamic failure of solids”, Phys Rep, vol. 147, n° 5-6, 1987, p. 253-388.

Suffis A. et al., « Modèle d’endommagement à effet retard, étude numérique et analytique de

l’évolution de la longueur caractéristique », Revue Européenne des Eléments Finis,

vol 11, n° 5, 2002.

Suffis A. et al., “Damage Model with Delay Effect: Analytical and Numerical Studies of the

evolution of the characteristics length”, Int. J. of Sol. and Stru., vol. 40, 2003, p. 3463-

Suffis A., Développement d'un modèle d’endommagement à taux de croissance contrôlée

pour la simulation robuste de ruptures sous impact, PHD Thesis, INSA-Lyon 2004.

Tuler F.R., “A criterion for the time dependence of dynamic fracture”, Int. J. of Fract. Mech.,

vol. 4, 1968, p. 431-437.

Zerilli F.J. et al., “Dislocation mechanics based analysis of material dynamics behaviour:

enlaced ductility, deformation twinning, shock deformation, shear instability, dynamic

recovery”, J. of Phys, IV France 7, vol. 61, 1977, C3-637.

Downloads

Published

2007-09-20

How to Cite

Suffis, A., Combescure, A. ., & Chevrier, P. . (2007). A delayed damage model for the prediction of dynamic fracture experiments: Application on metallic structures. European Journal of Computational Mechanics, 16(5), 601–625. https://doi.org/10.13052/REMN.16.601-625

Issue

Section

Original Article

Most read articles by the same author(s)

1 2 > >>