Fluid-structure interaction with a multiscale domain decomposition method
DOI:
https://doi.org/10.13052/EJCM.19.267-280Keywords:
FSI, domain decomposition method, fictitious domainAbstract
In order to solve structural problems submitted to a fluid-induced loading, we are interested in solving a fluid-structure interaction problem involving a deforming solid and a viscous fluid, under incompressible flow. We propose to use a partitioned but strongly coupled Gauss-Seidel scheme. We propose to solve the fluid part of the simulation by a finite element method with a scalable mixed domain decomposition strategy. A fictitious domain method enables taking into account the fluid-structure interface inside each fluid subdomain. Here, we describe the domain decomposition method and the coupling process on a stationary problem.
Downloads
References
Brooks A. N., Hughes T. J. R., “ Streamline upwind/Petrov-Galerkin formulations for convection
dominated flows with particular emphasis on the incompressible Navier-Stokes equations”,
Computer Methods in Applied Mechanics and Engineering, vol. 32, n° 1-3, p. 199-
, 1982.
Donea J., Huerta A., Finite Elements Methods for Flow Problems, Wiley, 2003.
Farhat C., Lesoinne M., “ Two efficient staggered algorithms for the serial and parallel solution
of three-dimensional nonlinear transient aeroelastic problems”, Computer Methods in
Applied Mechanics and Engineering, vol. 182, n° 3-4, p. 499-515, 2000.
Farhat C., Roux F., “ A method of Finite Element Tearing and Interconnecting and its parallel
solution algorithm”, International Journal for Numerical Methods in Engineering, vol. 32,
p. 1205-1227, 1991.
Gerstenberger A., Wall W., “ An extended finite element / mortar method based approach for
fluid-structure interaction”, Computer Methods in Applied Mechanics and Engineering, vol.
, p. 1699-1714, 2008.
Glowinski R., Pan T. W., Periaux J., “ A Lagrange multiplier/fictitious domain method for the
numerical simulation of incompressible viscous flow around moving rigid bodies: (I) case
where the rigid body motions are known a priori”, Comptes Rendus de l’Académie des
Sciences, vol. 324, p. 361-369, 1997.
Gosselet P., Rey C., Léné F., Dasset P., “ A domain decomposition method for quasiincompressible
formulations with discontinuous pressure field - Application to the mechanical
study of a flexible bearing”, Revue Européenne des Eléments Finis, vol. 11, p. 363-378,
Ladevèze P., “ Multiscale modelling and computational strategies for composites”, International
Journal for Numerical Methods in Engineering, vol. 60, n° 1, p. 233-253, 2004.
Li J., Dual primal FETI methods for stationary Stokes and Navier-Stokes equations, PhD thesis,
Courant Institute of Mathematical Sciences, september, 2002.
Mandel J., “ Balancing domain decomposition”, Communications in Numerical Methods in
Engineering, vol. 9, p. 233-241, 1993.
Matthies H., Steindorf J., “ Partitioned but strongly coupled iteration schemes for nonlinear
fluid-structure interaction”, Computer and Structures, vol. 80, p. 1991-1999, 2002.
Schäfer M., Turek S., “ Benchmark computations of laminar flow around a cylinder”, Flow
Simulation with High-Performance Computation II, vol. 52, p. 547-566, 1996.
Tezduyar T. E., Mittal S., Ray S. E., Shih R., “ Incompressible flow computations with stabilized
bilinear and linear equal-order-interpolation velocity-pressure elements”, Computer
Methods in Applied Mechanics and Engineering, vol. 95, n° 2, p. 221-242, 1992.
Toselli A., “ FETI domain decomposition methods for scalar advection-diffusion problems”,
Computer Methods in Applied Mechanics and Engineering, vol. 190, n° 43-44, p. 5759-
, 2001.
van Loon R., Anderson P., De Hart J., Baaijens F. P. T., “ A combined fictitious domain/adaptive
meshing method for fluid-structure interaction in heart valves”, International Journal for
Numerical Methods in Fluids, vol. 46, n° 5, p. 533-544, 2004.
Vereecke B., Bavestrello H., Dureisseix D., “ An extension of the FETI domain decomposition
method for incompressible and nearly incompressible problems”, Computer Methods in
Applied Mechanics and Engineering, vol. 192, n° 31-32, p. 3409-3429, 8, 2003.
Vergnault E., Vers une approche multi-échelle pour l’interaction Vers une approche multiéchelle
pour l’interaction fluide-structure, PhD thesis, ENS Cachan, 2009.
Wall W., Mok D., Ramm E., “ Partitioned Analysis Approach for the Transient, Coupled Response
of Viscous Fluids and Flexible Structures”, ECCM’99—Proc. European conference
on computational mechanics, Munich, Germany, August 31–September 3, 1999.
Yu Z., “ A DLM/FD method for fluid/flexible-body interactions”, Journal of Computational
Physics, vol. 207, n° 1, p. 1-27, 2005.
Zienkiewicz O., Taylor R., Nithiarasu P., The Finite Element Method for Fluid Dynamics,
Butterworth-Heinemann, 2005.