Fluid-structure interaction with a multiscale domain decomposition method

Authors

  • Etienne Vergnault LMT Cachan ENS Cachan/CNRS/Université Paris 6/PRES UniverSud Paris 61 Avenue du Président Wilson, F-94230 Cachan and EADS Innovation Works 12 rue Pasteur – BP 76, F-92152 Suresnes
  • Olivier Allix LMT Cachan ENS Cachan/CNRS/Université Paris 6/PRES UniverSud Paris 61 Avenue du Président Wilson, F-94230 Cachan
  • Serge Maison-le-Poëc EADS Innovation Works 12 rue Pasteur – BP 76, F-92152 Suresnes

DOI:

https://doi.org/10.13052/EJCM.19.267-280

Keywords:

FSI, domain decomposition method, fictitious domain

Abstract

In order to solve structural problems submitted to a fluid-induced loading, we are interested in solving a fluid-structure interaction problem involving a deforming solid and a viscous fluid, under incompressible flow. We propose to use a partitioned but strongly coupled Gauss-Seidel scheme. We propose to solve the fluid part of the simulation by a finite element method with a scalable mixed domain decomposition strategy. A fictitious domain method enables taking into account the fluid-structure interface inside each fluid subdomain. Here, we describe the domain decomposition method and the coupling process on a stationary problem.

Downloads

Download data is not yet available.

References

Brooks A. N., Hughes T. J. R., “ Streamline upwind/Petrov-Galerkin formulations for convection

dominated flows with particular emphasis on the incompressible Navier-Stokes equations”,

Computer Methods in Applied Mechanics and Engineering, vol. 32, n° 1-3, p. 199-

, 1982.

Donea J., Huerta A., Finite Elements Methods for Flow Problems, Wiley, 2003.

Farhat C., Lesoinne M., “ Two efficient staggered algorithms for the serial and parallel solution

of three-dimensional nonlinear transient aeroelastic problems”, Computer Methods in

Applied Mechanics and Engineering, vol. 182, n° 3-4, p. 499-515, 2000.

Farhat C., Roux F., “ A method of Finite Element Tearing and Interconnecting and its parallel

solution algorithm”, International Journal for Numerical Methods in Engineering, vol. 32,

p. 1205-1227, 1991.

Gerstenberger A., Wall W., “ An extended finite element / mortar method based approach for

fluid-structure interaction”, Computer Methods in Applied Mechanics and Engineering, vol.

, p. 1699-1714, 2008.

Glowinski R., Pan T. W., Periaux J., “ A Lagrange multiplier/fictitious domain method for the

numerical simulation of incompressible viscous flow around moving rigid bodies: (I) case

where the rigid body motions are known a priori”, Comptes Rendus de l’Académie des

Sciences, vol. 324, p. 361-369, 1997.

Gosselet P., Rey C., Léné F., Dasset P., “ A domain decomposition method for quasiincompressible

formulations with discontinuous pressure field - Application to the mechanical

study of a flexible bearing”, Revue Européenne des Eléments Finis, vol. 11, p. 363-378,

Ladevèze P., “ Multiscale modelling and computational strategies for composites”, International

Journal for Numerical Methods in Engineering, vol. 60, n° 1, p. 233-253, 2004.

Li J., Dual primal FETI methods for stationary Stokes and Navier-Stokes equations, PhD thesis,

Courant Institute of Mathematical Sciences, september, 2002.

Mandel J., “ Balancing domain decomposition”, Communications in Numerical Methods in

Engineering, vol. 9, p. 233-241, 1993.

Matthies H., Steindorf J., “ Partitioned but strongly coupled iteration schemes for nonlinear

fluid-structure interaction”, Computer and Structures, vol. 80, p. 1991-1999, 2002.

Schäfer M., Turek S., “ Benchmark computations of laminar flow around a cylinder”, Flow

Simulation with High-Performance Computation II, vol. 52, p. 547-566, 1996.

Tezduyar T. E., Mittal S., Ray S. E., Shih R., “ Incompressible flow computations with stabilized

bilinear and linear equal-order-interpolation velocity-pressure elements”, Computer

Methods in Applied Mechanics and Engineering, vol. 95, n° 2, p. 221-242, 1992.

Toselli A., “ FETI domain decomposition methods for scalar advection-diffusion problems”,

Computer Methods in Applied Mechanics and Engineering, vol. 190, n° 43-44, p. 5759-

, 2001.

van Loon R., Anderson P., De Hart J., Baaijens F. P. T., “ A combined fictitious domain/adaptive

meshing method for fluid-structure interaction in heart valves”, International Journal for

Numerical Methods in Fluids, vol. 46, n° 5, p. 533-544, 2004.

Vereecke B., Bavestrello H., Dureisseix D., “ An extension of the FETI domain decomposition

method for incompressible and nearly incompressible problems”, Computer Methods in

Applied Mechanics and Engineering, vol. 192, n° 31-32, p. 3409-3429, 8, 2003.

Vergnault E., Vers une approche multi-échelle pour l’interaction Vers une approche multiéchelle

pour l’interaction fluide-structure, PhD thesis, ENS Cachan, 2009.

Wall W., Mok D., Ramm E., “ Partitioned Analysis Approach for the Transient, Coupled Response

of Viscous Fluids and Flexible Structures”, ECCM’99—Proc. European conference

on computational mechanics, Munich, Germany, August 31–September 3, 1999.

Yu Z., “ A DLM/FD method for fluid/flexible-body interactions”, Journal of Computational

Physics, vol. 207, n° 1, p. 1-27, 2005.

Zienkiewicz O., Taylor R., Nithiarasu P., The Finite Element Method for Fluid Dynamics,

Butterworth-Heinemann, 2005.

Downloads

Published

2010-08-06

How to Cite

Vergnault, E. ., Allix, O. ., & Maison-le-Poëc, S. . (2010). Fluid-structure interaction with a multiscale domain decomposition method. European Journal of Computational Mechanics, 19(1-3), 267–280. https://doi.org/10.13052/EJCM.19.267-280

Issue

Section

Original Article