Etats limites plastiques en présence de l’écrouissage isotrope

Authors

  • Ali Chaaba Ecole Nationale Supérieure d’Arts et Métiers Marjane II, Beni M’hamed, B.P. 4024, Meknès Maroc
  • Lahbib Bousshine Ecole Nationale Supérieure d’Electricité et de Mécanique B.P. 8118, Oasis, Casablanca, Maroc

DOI:

https://doi.org/10.13052/EJCM.18.525-545

Keywords:

limit analysis, strain hardening, mathematical programming, inite element method

Abstract

Either in Structural Engineering or Metalworking processes by plastic deformation, the limit analysis is among the direct methods of the plastic collapse assessment. Basing on the kinematical approach in the sense of limit analysis and using finite elements method, the main objective of this work is to deal with large plastic deformations of von Mises’s materials taking into account isotropic hardening. In order to overcome difficulties caused by the non differentiability of plastic dissipation, we adopt a regularization method originally developed for compressible materials. In order to follow up the sequences of large deformations, we have used the sequential limit analysis procedure; it consists in the updating of material properties and geometrical configuration after each sequence.

Downloads

Download data is not yet available.

References

Avitzur B., Metal forming: Processes and Analysis, McGraw-Hill, New York, 1968.

Avitzur B., Handbook of Metal forming Processes, Wiley, New York, 1983.

Bousshine L., Chaaba A., de Saxcé G. et Guerlement G., « Etat limite des métaux rigides

parfaitement plastique par l’analyse limite et la méthode des éléments finis », Les cahiers

de la recherche, série A : Sciences et Techniques, vol. 4, Septembre, 2002, p. 145-160.

Bousshine L., Chaaba A. et de Saxcé G., “Plastic limit load of frictional contact supports

plane frames”, lnt. Jour. of Mech. Sci., November 2002, vol. 44, p.2189-2216.

Capsoni A. et Corradi L., “A finite element formulation of the rigid plastic limit analysis

problem”, Int. Jour. Num. Engng, vol. 40, p. 2063-2086.

Chaaba A., Bousshine L. et de Saxcé G., “Kinematic limit analysis modelling of rigid

perfectly plastic material by a regularisation approach and finite element method”,

International Journal for Numerical Methods in Engineering, 2003, 57, p. 1899-1922.

Chaaba A. Analyse limite des métaux et des matériaux granulaires par la théorie du

bipotentiel. Formulation éléments finis et applications, Thèse de Doctorat en Sciences

Appliquées, ENSEM de Casablanca, Janvier, 2001.

Chen W.F. Limit analysis and Soil Plasticity, Elsevier, New York, 1975.

Corradi L., Panzeri N. “A triangular finite element for sequential limit analysis of shells”,

Advances in Engineering software, 35, 2004, p. 633-643.

De Saxcé G. et Bousshine L., “Limit Analysis Theorems for Implicit Standard Materials:

Application to the unilateral Contact with Dry Friction and Non-associated flow Rules in

Soils and Rocks”, lnt. Jour. Mech. Sci., 1998, vol. 40, n° 4, p. 387-398.

Drucker D.C., Greenberg, H.J. et Prager W., “The safety factor of an elastic-plastic body in

plane strain”, J. Appl. Mech., 18, 1951, p. 371-378.

Drucker D.C., Prager W. et Greenberg, H.J., “Extended limit design theorems for constitutive

media”, Quart. Appl. Math., 9, 1952, p. 381-389.

Fassi-Fihri H., Bousshine L., Elharif A. et Chaaba A., « Analyse élastoplastique des métaux

en présence du contact unilatéral avec frottement sec de Coulomb », Les cahiers de la

recherche, série A : Sciences et Techniques, vol. 4, Septembre, 2004, p. 145-160.

Fassi Fihri H., Bousshine L., Chaaba A. et Elharif A., “Numerical simulation of orthogonal

metal cutting by incremental elastoplastic analysis and finite element method”, Journal of

Material Processing Technology, 141, 2003, p. 181-188.

Friaâ A., Le matériau de Norton-Hoff généralisé et ses applications en analyse limite, C.R.

Acad. Sci. Paris, t. 286, Série A, pp. 953-956, 1978.

Friaâ A., La loi de Norton–Hoff généralisée en plasticité et viscoplasticité, Thèse de Doctorat

d’État, Paris VI, 1979.

Gaudrat V.F. “A Newton type algorithm for plastic limit analysis”, Computer Methods in

Applied Mechanics and Engineering, vol. 88, n° 2, July 1991, p. 207-224.

Greenberg H.J. et Prager W., “Limit Design of beams and frames”, Proc. ASCE, vol. 77,

n° 59, 1951.

Guennouni A. T., Matériau de Norton-Hoff pour divers critères de plasticité de mécanique

des sols, Thèse de Doctorat, ENPC, Paris, 1982.

Guennouni A. T., Letallec P., « Calcul à la rupture: Régularisation de Norton-Hoff et

lagrangien augmenté », J. Mé. Théorique et Appliquée, vol. 2, n° 1, 1982.

Halphen B. et Salençon J., Elsatoplasticité, Presse de l’Ecole Nationale des Ponts et

Chaussées, 1987.

Hill R., “On the state of stress in a plastic-rigid body at the yield point”, Phil. Mag., vol. 7,

n° 42, 1951, p. 868-875.

Hill R., “On note on estimating yield-point loads in a plastic-rigid body”, Phil. Mag. vol. 7,

n° 43, 1952, p. 353-355.

Hill R., The mathematical Theory of Plasticity, Oxford Sciences publications, 1950.

Horne MR, Merchant W., The stability of frames, London, Maxwell, 1965.

Huh H., Kim K.P. et Kim H.S., “Collapse simulation of tubular structures using a finite

element limit analysis approach and shell elements”, Int Jour. of Mech. Sci., 2001, 43

p. 2171-2187.

Huh H., Lee C.H. et Yang W.H., “A general algorithm for plastic flow simulation by finite

element analysis”, lnt. Jour. Solids and Structures, 1999, 36, p. 1193-1207.

Hwan C. L., Large plastic deformation by sequential limit analysis : A finite element

approach with application in metal forming, Ph.D. Thesis, University of Michigan, 1992.

Jiang G.L., Application de l’analyse limite à l’étude de la stabilité des massifs de sol, Thèse

de Doctorat de l4ENPC, Septembre, 1992, Paris.

Johnson W., Sowerby R. et Venter R.D., Plane-Strain Slip-Line Fields For Metal-

Deformation Processes, Pergamon Press, 1982.

Jospin N.D., Etats limites des coudes par la méthode des éléments finis et la programmation

mathématique, Thèse de Doctorat en Sciences Appliquées, Université de Liège. 1992.

Kim Y.J. et Yang D.H. “A formulation for rigid-plastic finite element method, considering

work-hardening effect”, Int. J. Mech. Sci., 27 1985, p. 487-495.

Kobayashi S., Oh S. I. et Altan T., Metal forming and the finite element method, Oxford

Univ. Press, 1989.

Koiter W.T., “General Theorems for elastic-plastic solids”, Progress in solid mechanics,

vol. I, Sneddon & Hill. ed., North Holland, 1960, p. 163-221.

Lee C. H. And Kobayashi S., “New solutions to rigid-plastic deformations problems using a

matrix method”, Transactions of the ASME, J. Eng. Ind., 95, 1973, p. 865-886.

Lemaître J. et Chaboche J.L., Mechanics of solid materials, Cambridge University Press,

Cambridge, 1990.

Leu S. Y., “Limit analysis of strain-hardening viscoplastic cylinders under internal pressure

by using the velocity control: Analytical and numerical investigation”, International

journal of Mechanical Sciences, 50, 2008, p. 1578-1585.

Leu S. Y., “Analytical and numerical investigation of strain-hardening vicscoplastic thickwalled

cylinders under internal pressure using sequential limit analysis”, Compu. Methods

Appl. Mech Engrg., 196, 2007, p. 2713-2722.

Lung M. et Marenholtz O., “A finite element procedure for analysis of metal forming

process”, Transactions of the CSME, 2, 1974, p. 31-36.

Mercier B., « Sur la théorie et l’analyse numérique de problèmes de plasticité », Thèse d’Etat,

Université, Paris VI, 1977.

Moreau J. J., « Proximité et dualité dans un espace Hilbertien », Bull. Soc. Math., France, 93,

, p. 273-299.

Mori K., Osakada K. et Oda T. “Simulation of plane strain rolling by the rigid-plastic finite

element method”, Int. J. Mech. Sci., 24, 1982, 519.

Murtagh RA., et Saunders M.A., Minos 5.1 user’s guide, Stanford University, 1987.

Nagtegaal J.C., et De Jong J.E., “Some computational aspects of elastic-plastic large strain

analysis”, Int. J. Num. Meth. Eng., 17, 1981, p. 15-41.

Ponter A.R.S., “Carter K.F. Limit state solutions, based upon linear solutions with a spatially

varying elastic modulus”, Meth. Appl. Mech. Eng., 140, 1997, p. 237-258.

Ponter R.S., Fuschi P. et Engelhart M., “Limit analysis for a general class of yield

conditions”, Eur J Mech A/Solids, 2000, 19, p. 401-21.

Prager W., “The general theory of limit design”, Proc., 8th Int. Congress Appl. Mech., vol. 2,

Istambul, 1952, p. 65-72.

Prandtl L., “On the penetration hardness of plastic materials and the hardness of indenters”,

Zeits. Ang. Math. Mech., vol., 1921, p. 15.

Rockafellar R.T., Convex Analysis, Princeton University Press, 1996.

Salençon J., Calcul à la Rupture et Analyse Limite, Presses de l’ENPC, 1983.

Save M. et Massonet Ch., « Calcul plastique des constructions », vol. II, Structures Spatiales,

Structures dependant de plusieurs parameters, 2e éd., CBLIA, Bruxelles, 1972.

Voldoire F., “Regularized limit analysis and applications to the load carrying capacities of

mechanical components”, ECCOMAS, 2000, 11-14 September 2000, Barcelona, Spain.

Voldoire F., Limit analysis by the Norton-Hoff-Friaâ regularising method, M. Heitzer,

M. Staat, LISA project report 2001, publication du John von Neumann Institute for

Computing, 2003.

Wagoner R.H., Chenot J.L., Metal Forming Analysis, Cambridge University Press, 2001.

Yang W. H., “Large deformation of structures by sequential limit analysis”, Int. Jour. Solids

and Struc., 1993.

Yoon J.H. et Yang D.H., “Rigid-plastic finite element analysis of three dimensional forging

by considering friction on continuous curved dies with initial guess generation”, Int. J.

Mech. Sci., 30, 1988, p. 887-898.

Downloads

Published

2009-05-07

How to Cite

Chaaba, A. ., & Bousshine, L. . (2009). Etats limites plastiques en présence de l’écrouissage isotrope. European Journal of Computational Mechanics, 18(5-6), 525–545. https://doi.org/10.13052/EJCM.18.525-545

Issue

Section

Original Article