Dimensionnement optimal des coques minces par l’approche statique de l’analyse limite et les algorithmes génétiques
Keywords:
optimization, thin shells, limit analysis, mathematical programming, genetic algorithmsAbstract
In this paper, the problem of the dimensional optimization of thin rotationally symmetric shells is examined. The formulation proposed is based on the utilization of the limit analysis theory and genetic algorithms (Holland, 1976). This approach allows to simplify the problem by eliminating the dummy variables which were introduced by the discretization of the structure into finite elements. The problem of the limit analysis is solved by the use of a determinist method of the mathematical programming (Bideq, 1998). The structural optimization problem is solved by using the genetic algorithms.
Downloads
References
Beasley D., Bull D.R., Martin R.R., “An Overview of Genetic Algorithms : Part 1,
Fundamentals”, University Computing, vol. 15, n° 2, 1993a, p. 58-59.
Beasley D., Bull D.R., Martin R.R., “An Overview of Genetic Algorithms : Part 2, Research
Topics”, University Computing, vol. 15, n° 4, 1993b, p. 170-181.
Bideq M., Analyse limite des coques minces axisymétriques de révolution par la méthode des
éléments finis et la programmation mathématique, Thèse présentée en vues de l’obtention
du Diplôme d’Etudes Supérieures es Sciences Physiques, Université Mohamed V, Faculté
des Sciences de Rabat, n° 1656, 1998.
Biron A., Chwala U. S., “Numerical method for limit analysis of rotationally symmetric
shells”, Bull. Acad. Polon. Sci. 18, 1970, p. 25-41.
Bousshine L., Bideq M., Kouam M., Guerlement G., « Analyse limite des coques cylindriques
à plusieurs tronçons par les méthodes cinématique et statique », Revue Européenne des
Eléments Finis, vol. 11, n° 1, 2002, p. 9-37.
Chwala U. S., Biron A., Limit analysis of shells of revolution of arbitrary shape under
pressure, Rapport N°1775, Lab. de Rech. et d’Essais de Matériaux, Ecole Polytechnique
de Montréal, 1969.
Corradi L., Maier G., “A matrix theory of elastic-locking structures”, Meccanica 4, 1969.
Ding Y. L., “Shape optimization of structures : a literature survey”, Compt. Struct., 24, 1986,
p. 985-1004.
Drucker D. C., Prager W., Greenberg H. H., “Extended Limit Design Theorems for
Continuous Media”, Q. Appl. Math 9, 1952.
Fiacco A. V., McCormick G. P., Non-linear programming, sequential unconstrained
minimization techniques, Wiley, New-York, 1968.
Flugge W., Stress in shells, Springer, Berlin, 1960.
Freijs de Veubeke B., Displacement and Equilibrium Models in the Finite Element
Method.Stress Analysis, ed. ZienKiewicz, Wiley and Sons, 1965.
Frey F., Analyse statique non linéaire des structures par la méthode des éléments finis et son
application à la construction métallique, Thèse de doctorat, Lab. de Mec. Mat. et Stat. des
Const., Université de Liège, 1978.
Groenwold A. A., Stander N., Snyman A., “A regional genetic algorithm for the discrete
optimal design of truss structures”, I.J.N.M.E, vol. 44, 1999, p. 749-766.
Guerlement G., Lamblin D. O., « Analyse limite des plaques circulaires avec la condition de
plasticité de Von Mises », Bull. tech. Suisse romande, 98e année, n° 1, Lausanne, 1972.
Haslinger J., Neittaanmäki P., Finite element approximation for optimal shape design : theory
and applications, John Wiley, New York, 1988.
Hodge Jr. P. G., Limit analysis of rotationnally symetric plates and shells, Prentice Hall, New
York, 1963.
Holland J. H., Adaptation in Natural and Artificial Systems, The University of Michigan
Press, 1976.
Hu T. C., Shield R. T., “Uniqueness in the optimum design of structures”, J. Appl. Mech.,
Jenkins W.M., “Structural optimisation with the genetic algorithm. In the Structural
Engineer”, Institution of Structural Engineers, vol. 69 of 24, December 1991, p. 418-422.
Jenkins W.M., “A space condensation heuristic for combinatorial optimization”, edited by
B.H.V. Topping & M. Papadrakakis, Advances in structural optimization, 1994, p. 215-
Kalandas, Cyras A., “The finite element method in the analysis of problems of rigid-plastic
cylindrical shells”, Lietuvog Mechanikos Rinkinys 2, 1972.
Lamblin D., Analyse et dimensionnement plastique de coût minimum de plaques circulaires,
Thèse de Doctorat en sciences appliquées, Faculté Polytechnique de Mons, 1975.
Lamblin D., Guerlement G., Cinquini C., “Variational formulation of the optimal plastic
design of circular plates”, Comput. Math. Appl. Mech. Engn. 11, 1977, p. 19-30.
Lamblin D., Guerlement G., Cinquini C., “Application of linear programming to the optimal
plastic design of circular plates subject to technological constraints”, Computer methods
in Appl. Mech. and Eng., vol. 13, n° 2, 1978, p. 233-243.
Leung M., Nevill G. E., “Genetic algorithms for preliminary 2-D structural design”, Proc. 35
th AIAA/ASME/ASCE/AHS/ASC Struct. Dyn. Mater. Conf, 1994, p. 2287-2291.
Maxwell J. C., “On reciprocal figures, frames and diagrams of force”, in Scientific Papers,
vol. 2, University Press, Cambridge, 1890, p. 161-207.
Michell A. G. M., “The limits of economy in frames-structures”, Philos. Mag. 8, 1904,
p. 589-597.
Morelle P., Nguyen D. H., « Etude numérique de l’adaptation plastique des coques de
révolution par les éléments finis d’équilibre », J. Mec. Théorique et Appliquée, vol. 2,
n° 4, 1983.
Mota C. A., Leal R. P., Chio K. K., “Boundary elements in shape optimal design of structural
components”, In computer aided optimal design. Struct. & mech. syst., Springer, 1987,
p. 605-631.
Murtagh B. A., Saunders M. A., MINOS 5.1 Users Guide, Technical Report Sol 83-20R,
Stanford University, 1987.
Nguyen D. H., « Analyse limite rigide-plastique par une méthode quasi directe, Sciences et
Techniques de l’Armement », Mémorial de l’Artillerie Française, 2nd facc, 1973.
Nguyen D. H., “Direct limit analysis via rigid-plastic finite element”, Computer Methods in
Applied Mechanics and Engineering », vol. 8, n° 1, 1976.
Nguyen D. H., « Sur la plasticité et le calcul des états limites par éléments finis », Collection
des publications de la Faculté des Sciences Appliquées, n° 98, Liège, Belgique, 1985.
Nyssen C., Modélisation par éléments finis du comportement non linéaire de structures
aérospatiales, Thèse de doctorat, Lab. Aéronautique, Université de Liège, 1979.
Onat E. T., Prager W., “Limits of economy of materials in cylindrical shells”, De Ingenieur,
vol. 67, 1956, p. 46-49.
Ostwald M., “Optimum weight design of sandwich cylindrical shells under combined loads”,
Computers & structures, vol. 37, n° 3, 1990, p. 247-257.
Potts J. C., Giddens T. D., Yadav S. B., “The development and evaluation of an improved
genetic algorithm based on migration and artificial election”, IEEE Trans. Systems Man
Cybernet, 24, 1994, p. 73-86.
Rajeev S., Krishnamoorthy C.S., “Discrete optimization of structures using genetic
algorithms”, In Journal of structural Engineering, Proceeding of the American Society of
Civil Engeneers, vol. 118 of 5, May 1992, p. 1233-1250.
Renders J.M., Algorithmes génétiques et réseaux de neurones, Paris: Hermès, 1995.
Saka M. P., “Optimum geometry design of roof trusses by optimality criteria method”,
Comput. Struct., 38, 1991, p. 83-92.
Save M. A., Massonnet Ch., Calcul plastique des constructions, vol. 2, 2e édition, Centre
Belgo-Luxembourgeois d’Information de l’Acier, Bruxelles, 1972.
Save M. A., “Some aspects of minimum-weight design”, Engineering Plasticity, Cambridge
Univ Press, 1985.
Shield R. T., “On the optimum design of shells”, J. Appl. Mech., 1960, p. 316-322.
Srinivas M., Patnaik L. M., “Adaptive probabilities of crossover and mutation in genetic
algorithms”, IEEE Trans. Systems Man Cybernet 24, 1994, p. 656-666.
Vanderplaats G. N., “Structural optimization-past, present and future”, AIAA J., 20, 1982,
p. 992-1000.
Wang Bo P., Chen Jahau L., “Application of genetic algorithm for the support location
optimization of beams”, Computers &Structures, volume 58 of 4, p. 797-800, 1996.