Fast non-iterative methods for defect identification
DOI:
https://doi.org/10.13052/REMN.17.571-582Keywords:
inverse problems, topological sensitivity, fast multipole methodAbstract
This communication summarizes recent investigations on the identification of defects (cavities, inclusions) of unknown geometry and topology by means of the concept of topological sensitivity. This approach leads to the fast computation (equivalent to performing a few direct solutions), by means of ordinary numerical solution methods such as the BEM (used here), the FEM or the FDM, of defect indicator functions. Substantial further acceleration is obtained by using fast multipole accelerated BEMs. Possibilities afforded by this approach are demonstrated on numerical examples. The paper concludes with a discussion of further research on theoretical and numerical issues.
Downloads
References
Ammari H., Kang H., Reconstruction of small inhomogeneities from boundary measurements,
Lecture Notes in Mathematics 1846, Springer-Verlag, 2004.
Bonnet M., “BIE and material differentiation applied to the formulation of obstacle inverse
problems.”, Engng. Anal. with Bound. Elem., vol. 15, p. 121-136, 1995.
Bonnet M., Boundary Integral Equations Methods for Solids and Fluids, John Wiley and Sons,
a.
Bonnet M., “Boundary element based formulations for crack shape sensitivity analysis”, Engng.
Anal. with Bound. Elem., vol. 25, p. 347-362, 2001.
Bonnet M., “Topological sensitivity for 3D elastodynamic and acoustic inverse scattering in the
time domain”, Comp. Meth. in Appl. Mech. Engng., vol. 195, p. 5239-5254, 2006.
Bonnet M., “Inverse acoustic scattering by small-obstacle expansion of misfit function”, 2007,
under review.
Bonnet M., Burczy´nski T., Nowakowski M., “Sensitivity analysis for shape perturbation of
cavity or internal crack using BIE and adjoint variable approach”, Int. J. Solids Struct., vol.
, p. 2365-2385, 2002.
Bonnet M., Constantinescu A., “Inverse problems in elasticity”, Inverse Problems, vol. 21,
p. R1-R50, 2005. topical review article.
Bonnet M., Guzina B. B., “Sounding of finite solid bodies by way of topological derivative”,
Int. J. Num. Meth. in Eng., vol. 61, p. 2344-2373, 2004.
Bonnet M., Reynier M., “On the estimation of the geometrical support of modelling defects
using the distributed error in constitutive equation.”, Inverse Problems, Control and Shape
Optimization, Carthage, Tunisie, p. 65-70, 1998.
Bui H. D., Fracture mechanics. Inverse problems and solutions, Springer-Verlag, 2006.
Chaillat S., Bonnet M., Semblat J. F., “A fast multipole accelerated BEM for 3-D elastic wave
computation”, Revue Européenne de Mécanique Numérique, vol. 17, p. 701-712, 2008.
Colton D., Coyle J., Monk P., “Recent developments in inverse acoustic scattering theory.”,
SIAM Review, vol. 42, p. 369-414, 2000.
Colton D., Kirsch A., “A simple method for solving inverse scattering problems in the resonance
region”, Inverse Problems, vol. 12, p. 383-393, 1996.
Darve E., “The fast multipole method: numerical implementation”, J. Comp. Phys., vol. 160,
p. 195-240, 2000.
Eschenauer H. A., Kobelev V. V., Schumacher A., “Bubble method for topology and shape
optimization of structures”, Structural Optimization, vol. 8, p. 42-51, 1994.
Farhat C., Tezaur R., Djellouli R., “On the solution of three-dimensional inverse obstacle
acoustic scattering problems by a regularized Newton method”, Inverse Problems, vol. 18,
p. 1229-1246, 2002.
Feijóo G. R., “A new method in inverse scattering based on the topological derivative”, Inverse
Problems, vol. 20, p. 1819-1840, 2004.
Gallego R., Rus G., “Identification of cracks and cavities using the topological sensitivity
boundsary integral equation”, Comp. Mech., vol. 33, p. 154-163, 2004.
Garreau S., Guillaume P., Masmoudi M., “The topological asymptotic for PDE systems: the
elasticity case.”, SIAM J. Contr. Opt., vol. 39, p. 1756-1778, 2001.
Greengard L., Rokhlin V., “A new version of the fast multipole method for the Laplace equation
in three dimensions”, Acta Numerica, vol. 6, p. 229-270, 1997.
Guzina B. B., Bonnet M., “Topological derivative for the inverse scattering of elastic waves”,
Quart. J. Mech. Appl. Math., vol. 57, p. 161-179, 2004.
Guzina B. B., Bonnet M., “Small-inclusion asymptotic of misfit functionals for inverse problems
in acoustics”, IP, vol. 22, p. 1761-1785, 2006.
Guzina B. B., Chikichev I., “From imaging to material identification: a generalized concept of
topological sensitivity”, J. Mech. Phys. Solids, vol. 55, p. 245-279, 2007.
Guzina B. B., Nintcheu Fata S., Bonnet M., “On the stress-wave imaging of cavities in a semiinfinite
solid”, Int. J. Solids Struct., vol. 40, p. 1505-1523, 2003.
Ladevèze P., Chouaki A., “Application of a posteriori error estimation for structural model
updating”, Inverse Problems, vol. 15, p. 49-58, 1999.
Ladeveze P., Reynier M., Nedjar D., “Parametric correction of finite element models using
modal tests.”, in H. D. B. M. Tanaka (ed.), Inverse problems in engineering mechanics,
Springer-Verlag, p. 91-100, 1993.
Lambert M., Bonnet M., Lesselier D., “Introduction à la diffraction inverse en acoustique et
élasticité”, in M. Bruneau, C. Potel (eds), Matériaux et acoustique, Hermes, p. 82-101,
Litman A., Lesselier D., Santosa F., “Reconstruction of a two-dimensional binary obstacle by
controlled evolution of a level-set”, Inverse Problems, vol. 14, p. 685-706, 1998.
Margonari M., Bonnet M., “Fast multipole method applied to the coupling of elastostatic BEM
with FEM”, Computers and Structures, vol. 83, p. 700-717, 2005.
Masmoudi M., Pommier J., Samet B., “The topological asymptotic expansion for the Maxwell
equations and some applications”, Inverse Problems, vol. 21, p. 547-564, 2005.
Michalewicz Z., Fogel D. B., How to solve it: modern heuristics, Springer-Verlag, 2004.
Nemitz N., Méthode multipôle rapide et sensibilité topologique pour l’identification approchée
de défauts à partir de données de type acoustique, thèse de doctorat, Ecole Polytechnique,
Palaiseau, France, 2006.
Nemitz N., Bonnet M., “Topological sensitivity and FMM-accelerated BEM applied to 3D
acoustic inverse scattering”, Engng. Anal. with Bound. Elem., 2007. (accepté).
Nintcheu Fata S., Guzina B. B., “A linear sampling method for near-field inverse problems in
elastodynamics”, Inverse Problems, vol. 20, p. 713-736, 2004.
Nishimura N., “Fast multipole accelerated boundary integral equation methods”, Appl. Mech.
Rev., vol. 55, p. 299-324, 2002.
Pommier J., Samet B., “The topological asymptotic for the Helmholtz equation with Dirichlet
condition on the boundary of an arbitrarily shaped hole”, SIAM J. Control Optim., vol. 43,
p. 899-921, 2005.
Potthast R., “A survey on sampling and probe methods for inverse problems”, Inverse Problems,
vol. 22, p. R1-R47, 2006.
Samet B., Amstutz S., Masmoudi M., “The topological asymptotic for the Helmholtz equation”,
SIAM J. Control Optim., vol. 42, p. 1523-1544, 2004.
Schumacher A., Topologieoptimierung von Bauteilstrukturen unter Verwendung von Lochpositionierungskriterien,
thèse de doctorat, Univ. of Siegen, Germany, 1995.
Sokolowski J., Zochowski A., “On the topological derivative in shape optimization.”, SIAM J.
Control Optim., vol. 37, p. 1251-1272, 1999.
Sylvand G., “Complex industrial computations in electromagnetism using the fast multipole
method”, in G. Cohen, E. Heikkola, P. Joly, P. Neittaanmäki (eds), Mathematical and numerical
methods aspects of wave propagation, Springer-Verlag, p. 657-662, 2003.
Tarantola A., Inverse problem theory and methods for model parameter estimation, SIAM,