A fast multipole accelerated BEM for 3-D elastic wave computation
DOI:
https://doi.org/10.13052/REMN.17.701-712Keywords:
boundary element method, fast multipole method, 3D elastodynamicsAbstract
The solution of the elastodynamic equations using boundary element methods (BEMs) gives rise to fully-populated matrix equations. Earlier investigations on the Helmholtz and Maxwell equations have established that the Fast Multipole (FM) method reduces the complexity of a BEM solution to N log2 N per GMRES iteration. The present article addresses the extension of the FM-BEM strategy to 3D elastodynamics in the frequency domain. Efficiency and accuracy are demonstrated on numerical examples involving up to N = O(106) boundary nodal unknowns.
Downloads
References
Bonnet M., Boundary Integral Equation Method for Solids and Fluids, Wiley, 1999.
Brebbia C. A.and Telles J. C. F. W. L. C., Boundary element techniques, Springer, 1984.
Cruse T., “ Numerical solutions in three-dimensional elastostatics”, Int. J. Solids Struct., vol. 5,
p. 1259-1274, 1969.
Dangla P., Semblat J. F., Xiao H., Delépine N., “ A simple and efficient regularization method
for 3D BEM: application to frequency-domain elastodynamics”, Bull. Seism. Soc. Am., vol.
, p. 1916-1927, 2005.
Darve E., “ The FastMultipole Method : Numerical Implementation”, J. Comp. Phys., vol. 160,
p. 195-240, 2000a.
Darve E., “ The fast multipole method: I. Error analysis and asymptotic complexity”, SIAM J.
Numer. Anal., vol. 38, p. 98-128, 2000b.
Epton M., Dembart B., “ Multipole translation theory for the three-dimensional Laplace and
Helmholtz equations”, SIAM J. Sci. Comp., vol. 16, p. 865-897, 1995.
Eringen A., Suhubi E., Elastodynamics, vol. II-linear theory, Academic Press, 1975.
Fujiwara H., “ The fast multipole method for the integral equations of seismic scattering problems”,
Geophys. J. Int., vol. 133, p. 773-782, 1998.
Fujiwara H., “ The fast multipole method for solving integral equations of three-dimensional
topography and basin problems”, Geophys. J. Int., vol. 140, p. 198-210, 2000.
Givoli D., Numerical Methods for Problems in infinite domains, Elsevier, 1992.
Guzina B. B., Pak R. Y. S., “ On the Analysis of Wave Motions in a Multi-Layered Solid”,
Quart. J. Mech. Appl. Math., vol. 54, p. 13-37, 2001.
Ihlenburg F., Babuška I., “ Dispersion analysis and error estimation of Galerkin finite element
methods for the Helmholtz equation”, Int. J. Numer. Meth. Engng., vol. 38, p. 3745-3774,
Nishimura N., “ Fast multipole accelerated boundary integral equation methods”, Appl. Mech.
Rev., 2002.
Reinoso E., Wrobel L. C., Power H., “ Three-dimensional scattering of seismic waves from
topographical structures”, Soil. Dyn. Earthquake Engng., vol. 16, p. 41-61, 1997.
Rizzo F., “ An integral equation approach to boundary value problems of classical elastostatics”,
Quart. Appl. Math., vol. 25, p. 83-95, 1967.
Sánchez-Sesma F. J., “ Diffraction of elastic waves by 3D surface irregularities”, Bull. Seism.
Soc. Am., vol. 73, p. 1621-1636, 1983.
Semblat J. F., Brioist J., “ Efficiency of higher order finite elements for the analysis of seismic
wave propagation”, J. Sound Vib., vol. 231, p. 460-467, 2000.
Sylvand G., La méthode multipôle rapide en éléctromagnétisme : performances, parallélisation,
applications, PhD thesis, ENPC, 2002.
Takahashi T., Nishimura N., Kobayashi S., “ A fast BIEMfor three-dimensional elastodynamics
in time domain”, Engng. Anal. Bound. Elem., vol. 27, p. 491-506, 2003.
Yoshida K., Applications of fast multipole method to boundary integral equation method, PhD
thesis, University of Kyoto, 2001.