Identification d’obstacles en acoustique dans des domaines tridimensionnels bornés
Keywords:
inverse scattering problem, boundary integral equation, boundary elements, fast multipole method, topological gradientAbstract
This communication addresses the identification of rigid scatterers in a three-dimensional acoustic medium of finite extent. The methodology is based on two main concepts. The first is a boundary element formulation of the relevant acoustic boundary value problems which is accelerated by means of the Fast Multipole Method, and thereby applicable to acoustic domains of relatively large size compared to the acoustic wavelength. The second is the topological gradient of the cost function associated with the inverse problem, a distribution whose computation indicates the spatial regions in the acoustic medium where the virtual introduction of a rigid scatterer of very small size induces a decrease of the cost function, thereby allowing e.g. a better-informed choice of initial conditions for a subsequent optimization-based inversion algorithm. Both concepts are presented and demonstrated on numerical examples.
Downloads
References
Bonnet M., Boundary Integral Equations Methods for Solids and Fluids, John Wiley and Sons,
Bonnet M., Guzina B. B., « Sounding of finite solid bodies by way of topological derivative »,
Int. J. Num. Meth. in Eng., vol. 61, p. 2344-2373, 2004.
ChewW. C. e. a., « Fast integral equation solvers in computational electromagnetics of complex
structures. », Engng. Anal. with Bound. Elem., vol. 27, p. 803-823, 2003.
Coifman R., Rokhlin V.,Wandzura S., « The Fast Multipole Method for theWave Equation : A
Pedestrian Prescription », IEEE Antennas and Propagation Magazine, vol. 35, n 3, p. 7-12,
June, 1993.
Darve E., « The fast multipole method : numerical implementation », J. Comp. Phys., vol. 160,
p. 195-240, 2000.
Eschenauer H. A., Kobelev V. V., Schumacher A., « Bubble method for topology and shape
optimization of structures », Structural Optimization, vol. 8, p. 42-51, 1994.
Garreau S., Guillaume P., Masmoudi M., « The topological asymptotic for PDE systems : the
elasticity case. », SIAM J. Contr. Opt., vol. 39, p. 1756-1778, 2001.
Greengard L., Rokhlin V., « A new version of the fast multipole method for the Laplace equation
in three dimensions », Acta Numerica, vol. 6, p. 229-270, 1997.
Nishimura N., « Fast multipole accelerated boundary integral equation methods », Appl. Mech.
Rev., vol. 55, p. 299-324, 2002.
Sylvand G., La méthode multipôle rapide en électromagnétisme : performances, parallélisation,
applications, PhD thesis, Ecole Nationale des Ponts et Chaussées, Noisy le Grand, France,