Identification d’obstacles en acoustique dans des domaines tridimensionnels bornés

Authors

  • Nicolas Nemitz Laboratoire de Mécanique des solides Ecole Polytechnique F-91128 Palaiseau cedex
  • Marc Bonnet Laboratoire de Mécanique des solides Ecole Polytechnique F-91128 Palaiseau cedex

Keywords:

inverse scattering problem, boundary integral equation, boundary elements, fast multipole method, topological gradient

Abstract

This communication addresses the identification of rigid scatterers in a three-dimensional acoustic medium of finite extent. The methodology is based on two main concepts. The first is a boundary element formulation of the relevant acoustic boundary value problems which is accelerated by means of the Fast Multipole Method, and thereby applicable to acoustic domains of relatively large size compared to the acoustic wavelength. The second is the topological gradient of the cost function associated with the inverse problem, a distribution whose computation indicates the spatial regions in the acoustic medium where the virtual introduction of a rigid scatterer of very small size induces a decrease of the cost function, thereby allowing e.g. a better-informed choice of initial conditions for a subsequent optimization-based inversion algorithm. Both concepts are presented and demonstrated on numerical examples.

Downloads

Download data is not yet available.

References

Bonnet M., Boundary Integral Equations Methods for Solids and Fluids, John Wiley and Sons,

Bonnet M., Guzina B. B., « Sounding of finite solid bodies by way of topological derivative »,

Int. J. Num. Meth. in Eng., vol. 61, p. 2344-2373, 2004.

ChewW. C. e. a., « Fast integral equation solvers in computational electromagnetics of complex

structures. », Engng. Anal. with Bound. Elem., vol. 27, p. 803-823, 2003.

Coifman R., Rokhlin V.,Wandzura S., « The Fast Multipole Method for theWave Equation : A

Pedestrian Prescription », IEEE Antennas and Propagation Magazine, vol. 35, n 3, p. 7-12,

June, 1993.

Darve E., « The fast multipole method : numerical implementation », J. Comp. Phys., vol. 160,

p. 195-240, 2000.

Eschenauer H. A., Kobelev V. V., Schumacher A., « Bubble method for topology and shape

optimization of structures », Structural Optimization, vol. 8, p. 42-51, 1994.

Garreau S., Guillaume P., Masmoudi M., « The topological asymptotic for PDE systems : the

elasticity case. », SIAM J. Contr. Opt., vol. 39, p. 1756-1778, 2001.

Greengard L., Rokhlin V., « A new version of the fast multipole method for the Laplace equation

in three dimensions », Acta Numerica, vol. 6, p. 229-270, 1997.

Nishimura N., « Fast multipole accelerated boundary integral equation methods », Appl. Mech.

Rev., vol. 55, p. 299-324, 2002.

Sylvand G., La méthode multipôle rapide en électromagnétisme : performances, parallélisation,

applications, PhD thesis, Ecole Nationale des Ponts et Chaussées, Noisy le Grand, France,

Downloads

Published

2006-08-10

How to Cite

Nemitz, N. ., & Bonnet, M. . (2006). Identification d’obstacles en acoustique dans des domaines tridimensionnels bornés. European Journal of Computational Mechanics, 15(1-3), 307–318. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2155

Issue

Section

Original Article