Absorbing interfaces in structural-acoustic coupled problems
DOI:
https://doi.org/10.13052/REMN.17.677-688Keywords:
elastoacoustic, noise reduction, porous medium, wall acoustic impedance, finite elementsAbstract
This work concerns finite element formulations of structural-acoustic interior problems with dissipative interfaces. The main purpose is to establish the link between wall acoustic impedance models and poroelastic appraoches based on the Biot theory. The proposed method consists in determining the acoustic impedance parameters starting from intrinsic characteristics of the porous medium. This impedance is then introduced into the vibroacoustic finite element formulation to take into account the dissipative aspect of the fluid-structure interface.
Downloads
References
Allard J.-F., Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials,
Elsevier Applied Science, London, 1993.
Atalla N., Panneton R., Debergue P., “ A mixed displacement-pressure formulation for poroelastic
materials”, Journal of the Acoustic Society of America, vol. 104, n° 3, p. 1444-1452,
Bermúdez A., Rodríguez R., “ Modelling and numerical solution of elastoacoustic vibrations
with interface damping”, International Journal for Numerical Methods in Engineering, vol.
, n° 10, p. 1763-1779, 1999.
Davidsson P., Structure-acoustic analysis; Finite element modelling and reduction methods, Phd
thesis, Lund University, 2004.
Davidsson P., Sandberg G., “ A reduction method for structure-acoustic and poroelastic-acoustic
problems using interface-dependent Lanczos vectors”, Computer Methods in Applied Mechanics
and Engineering, vol. 195, n° 17-18, p. 1933-1945, 2006.
Deü J.-F., LarbiW., Ohayon R., “ Dissipative interface modeling for vibroacoustic problems - A
new symmetric formulation”, in C. M. Soares, J. Martins, H. Rodrigues, J. Ambrósio (eds),
ComputationalMechanics – Solids, Structures and Coupled Problems, Springer, Dordrecht,
Netherlands, p. 413-428, 2006.
Göransson P., “ A 3-D, symmetric, finite element formulation of the Biot equations with application
to acoustic wave propagation through an elastic porous medium”, International
Journal for Numerical Methods in Engineering, vol. 41, n° 1, p. 167-192, 1998.
Kehr-Candille V., Ohayon R., “ Elastoacoustic damped vibrations – finite element and modal
reduction methods”, in O. Z. P. Ladevèze (ed.), New Advances in Computational Structural
Mechanics, Elsevier, Amsterdam, Netherlands, p. 321-334, 1992.
Larbi W., Deü J.-F., Ohayon R., “ A new finite element formulation for internal acoustic problems
with dissipative walls”, International Journal for Numerical Methods in Engineering,
vol. 68, n° 3, p. 381-399, 2006.
Morand H.-P., Ohayon R., Fluid-Structure Interaction, Wiley, New York, 1995.
Pierce A., Acoustics: An Introduction to Its Physical Principles and Applications, Acoustical
Society of America, New York, 1989.