Absorbing interfaces in structural-acoustic coupled problems

Authors

  • Walid Larbi Structural Mechanics and Coupled Systems Laboratory Conservatoire National des Arts et Métiers Chaire de Mécanique - Case courrier 353 2 rue Conté, F-75003 Paris
  • Jean-François Deü Structural Mechanics and Coupled Systems Laboratory Conservatoire National des Arts et Métiers Chaire de Mécanique - Case courrier 353 2 rue Conté, F-75003 Paris
  • Roger Ohayon Structural Mechanics and Coupled Systems Laboratory Conservatoire National des Arts et Métiers Chaire de Mécanique - Case courrier 353 2 rue Conté, F-75003 Paris

DOI:

https://doi.org/10.13052/REMN.17.677-688

Keywords:

elastoacoustic, noise reduction, porous medium, wall acoustic impedance, finite elements

Abstract

This work concerns finite element formulations of structural-acoustic interior problems with dissipative interfaces. The main purpose is to establish the link between wall acoustic impedance models and poroelastic appraoches based on the Biot theory. The proposed method consists in determining the acoustic impedance parameters starting from intrinsic characteristics of the porous medium. This impedance is then introduced into the vibroacoustic finite element formulation to take into account the dissipative aspect of the fluid-structure interface.

Downloads

Download data is not yet available.

References

Allard J.-F., Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials,

Elsevier Applied Science, London, 1993.

Atalla N., Panneton R., Debergue P., “ A mixed displacement-pressure formulation for poroelastic

materials”, Journal of the Acoustic Society of America, vol. 104, n° 3, p. 1444-1452,

Bermúdez A., Rodríguez R., “ Modelling and numerical solution of elastoacoustic vibrations

with interface damping”, International Journal for Numerical Methods in Engineering, vol.

, n° 10, p. 1763-1779, 1999.

Davidsson P., Structure-acoustic analysis; Finite element modelling and reduction methods, Phd

thesis, Lund University, 2004.

Davidsson P., Sandberg G., “ A reduction method for structure-acoustic and poroelastic-acoustic

problems using interface-dependent Lanczos vectors”, Computer Methods in Applied Mechanics

and Engineering, vol. 195, n° 17-18, p. 1933-1945, 2006.

Deü J.-F., LarbiW., Ohayon R., “ Dissipative interface modeling for vibroacoustic problems - A

new symmetric formulation”, in C. M. Soares, J. Martins, H. Rodrigues, J. Ambrósio (eds),

ComputationalMechanics – Solids, Structures and Coupled Problems, Springer, Dordrecht,

Netherlands, p. 413-428, 2006.

Göransson P., “ A 3-D, symmetric, finite element formulation of the Biot equations with application

to acoustic wave propagation through an elastic porous medium”, International

Journal for Numerical Methods in Engineering, vol. 41, n° 1, p. 167-192, 1998.

Kehr-Candille V., Ohayon R., “ Elastoacoustic damped vibrations – finite element and modal

reduction methods”, in O. Z. P. Ladevèze (ed.), New Advances in Computational Structural

Mechanics, Elsevier, Amsterdam, Netherlands, p. 321-334, 1992.

Larbi W., Deü J.-F., Ohayon R., “ A new finite element formulation for internal acoustic problems

with dissipative walls”, International Journal for Numerical Methods in Engineering,

vol. 68, n° 3, p. 381-399, 2006.

Morand H.-P., Ohayon R., Fluid-Structure Interaction, Wiley, New York, 1995.

Pierce A., Acoustics: An Introduction to Its Physical Principles and Applications, Acoustical

Society of America, New York, 1989.

Downloads

Published

2008-08-14

How to Cite

Larbi, W. ., Deü, J.-F. ., & Ohayon, R. . (2008). Absorbing interfaces in structural-acoustic coupled problems. European Journal of Computational Mechanics, 17(5-7), 677–688. https://doi.org/10.13052/REMN.17.677-688

Issue

Section

Original Article