Atténuation des vibrations de structures par traitement piézoélectrique/viscoélastique en utilisant un modèle à dérivées fractionnaires

Authors

  • Ana Cristina Galucio Conservatoire National des Arts et Métiers Laboratoire de Mécanique des Structures et des Systèmes Couplés 2 rue Conté, F-75003 Paris
  • Jean-François Deü Conservatoire National des Arts et Métiers Laboratoire de Mécanique des Structures et des Systèmes Couplés 2 rue Conté, F-75003 Paris
  • Roger Ohayon Conservatoire National des Arts et Métiers Laboratoire de Mécanique des Structures et des Systèmes Couplés 2 rue Conté, F-75003 Paris

Keywords:

damping treatment, piezoelectric material, viscoelasticity, fractional derivatives, sandwich beam, finite element, transient dynamics

Abstract

This work presents a finite element formulation for vibration reduction of an adaptive sandwich beam composed of a viscoelastic core and elastic/piezoelectric laminated faces. The electromechanical coupling is taken into account by modifying the stiffness matrix of the piezoelectric layers. The finite element formulation has no electrical degrees-of-freedom. The fractional derivative Zener model is used to characterize the viscoelastic behavior of the core. Equations of motion are solved using a direct time integration method based on the Newmark scheme in conjunction with the Grünwald approximation of fractional derivatives.

Downloads

Download data is not yet available.

References

[BAG 83] BAGLEY R. L., TORVIK P. J., « Fractional calculus - a different approach to the

analysis of viscoelastically damped structures », AIAA Journal, vol. 21, 1983, p. 741-748.

[ENE 99] ENELUND M., OLSSON P., « Damping described by fading memory – analysis and

application to fractional derivative models », International Journal of Solids and Structures,

vol. 36, 1999, p. 939-970.

[GAL 04] GALUCIO A. C., DEÜ J.-F., OHAYON R., « Finite element formulation of viscoelastic

sandwich beams using fractional derivative operators », Computational Mechanics,

vol. 33, 2004, p. 282-291.

[GOL 85] GOLLA D. F., HUGHES P. C., « Dynamics of viscoelastic structures – a timedomain,

finite element formulation », Journal of Applied Mechanics, vol. 52, no 4, 1985,

p. 897-906.

[LES 95] LESIEUTRE G. A., BIANCHINI E., « Time domain modeling of linear viscoelasticity

using anelastic displacement field », Journal of Vibration and Acoustics, vol. 117, no 4,

, p. 424-430.

[LIO 97] LION A., « On the thermodynamics of fractional damping elements », Continuum

Mechanics and Thermodynamics, vol. 9, 1997, p. 83-96.

[PRI 03] PRITZ T., « Five-parameter fractional derivative model for polymeric damping materials

», Journal of Sound and Vibration, vol. 265, 2003, p. 935-952.

[SCH 01] SCHMIDT A., GAUL L., « FE implementation of viscoelastic constitutive stressstrain

relations involving fractional time derivatives », Proc. Constitutive Models for Rubbers

II. A.A. Balkema Publishers, Tokyo, 2001, p. 79-89.

[TRI 00] TRINDADE M. A., BENJEDDOU A., OHAYON R., « Modeling of frequencydependent

viscoelastic materials for active-passive vibration damping », Journal of Vibration

and Acoustics, vol. 122, 2000, p. 169-174.

[TRI 01] TRINDADE M. A., BENJEDDOU A., OHAYON R., « Finite element modelling of

hybrid active-passive vibration damping of multilayer piezoelectric sandwich beams – part

I : Formulation », International Journal for Numerical Methods in Engineering, vol. 51,

, p. 835-854.

Downloads

Published

2004-08-20

How to Cite

Galucio, A. C. ., Deü, J.-F. ., & Ohayon, R. . (2004). Atténuation des vibrations de structures par traitement piézoélectrique/viscoélastique en utilisant un modèle à dérivées fractionnaires. European Journal of Computational Mechanics, 13(5-7), 509–521. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2303

Issue

Section

Original Article