Multimodel design strategies applied to sonic boom reduction
DOI:
https://doi.org/10.13052/REMN.17.245-269Keywords:
optimization, shape design, parameterization, automatic differentiation, anisotropic mesh adaptation, sonic boomAbstract
The shape optimization of a supersonic aircraft need a composite model combining a 3D CFD high-fidelity model and a simplified boom propagation model. The management of this complexity is studied in an optimization loop, with exact discrete adjoints of 3D flow and mesh deformation system. The introduction of a mesh adaptation algorithm is also considered.
Downloads
References
Alauzet F., Frey P., George P.-L., Mohammadi B., “ 3D transient fixed point mesh adaptation
for time dependent problems. Application to CFD simulations ”, J. Comp. Phys., vol. 222,
p. 592-623, 2007.
Alauzet F., Loseille A., Dervieux A., Frey P., “ Multi-dimensional continuous metric for mesh
adaptation ”, Proc. of 15th Int. Meshing Rountable, Springer, p. 191-214, 2006.
Alexandrov N., “ Multilevel methods for MDO ”, Multidisciplinary Design Optimization: State
of the Art, SIAM Publications, Philadelphia, PA, p. 79-89, 1997.
Alonso J., Kroo I., Jameson A., “ Advanced Algorithms For Design And Optimization Of Quiet
Supersonic Platforms ”, AIAA Paper, vol. 2002-0144, p. 1-13, 2002.
Bastin J., Rogé G., “ A multidimensional fluctuation splitting scheme for three dimensional
Euler equations ”, European Journal of Finite Elements, vol. 33, n 6, p. 1241-1259, 1999.
Becker R., Kapp H., Rannacher R., “ Adaptive Finite Element Methods for Optimal Control of
Partial Differential Equations: Basic Concept ”, SIAM Journal on Control and Optimization,
vol. 39, n 1, p. 113-132, 2001.
Dinh Q., Rogé G., Sevin C., Stoufflet B., “ Shape Optimisation in Computational Fluid Dynamics
”, European Journal of Finite Elements, vol. 5, p. 569-594, 1996.
Farhat C., Maute K., Argrow B., Nikbay M., “ A Shape Optimization Methodology For Reducing
The Sonic Boom Initial Pressure Rise ”, AIAA Paper, vol. 2002-0145, p. 1-11, 2002.
Frey P., Alauzet F., “ Anisotropic mesh adaptation for CFD computations ”, Comput. Methods
Appl. Mech. Engrg., vol. 194, n 48-49, p. 5068-5082, 2005.
Frey P., George P.-L., Mesh generation. Application to finite elements, Hermès Science, Paris,
Oxford, 2000.
Giles M., Pierce N., “ Analytic adjoint solutions for the quasi-one-dimensional euler equations
”, Journal of Fluid Mechanics, vol. 3, n 426, p. 327-345, 2001.
Hascoët L., Pascual V., TAPENADE 2.1 user’s guide, RT-0300, INRIA, 2004.
Herskovits J., Lapporte E., Tallec P. L., Santos G., “ A Quasi-Newton Interior Point Algorithm
Applied for Constrained Optimum Design in Computational Fluid Dynamics ”, European
Journal of Finite Elements, vol. 5, p. 595-617, 1996.
ICAO, Manual of the ICAO Standard Atmosphere (extended to 80 kilometres), Doc 7488, Third
edn, 1993.
Koobus B., Hascoët L., Alauzet F., Loseille A., Mesri Y., Dervieux A., “ Continuous mesh
adaptation models for CFD ”, CFD Journal, 2007. 12:3.
Leservoisier D., George P.-L., Dervieux A., Métrique continue et optimisation de maillage,
RR-4172, INRIA, April, 2001. (in French).
Lions J.-L., Optimal Control of systems governed by Partial Differential Equations, Springer-
Verlag, New York, 1971.
Polak E., Optimization: Algorithms and Consistent Approximation, n 124 in Applied Mathematical
Sciences, Springer-Verlag, Berlin-New-York, 1997.
Sobieszczanski-Sobieski J., Haftka R., “ Multidisciplinary aerospace design optimization: Survey
of recent developments ”, Structural Optimization, vol. 14, n 1, p. 1-23, 1997.
Thomas C., Extrapolation of sonic boom pressure signatures by the waveform parameter
method, TN. n D-6832, NASA, 1972.
Venditti A., Darmofal D., “ Grid Adaptation for Functional Outputs: Application to Two-
Dimensional Inviscid Flows ”, J. Comput. Physics, vol. 176, p. 40-69, 2002.
Zhu J., Zienkiewicz O., “ A Posteriori error estimation and three-dimentional automatic mesh
generation ”, Finite Elements in Analysis and Design, vol. 25, p. 167 - 184, 1997.