Positivity statements for a mixed-element-volume scheme on xed and moving grids

Authors

  • Paul-Henry Cournède LMAS, Ecole Centrale Paris, F-92295 Châtenay-Malabry
  • Bruno Koobus Mathématiques, Université de Montpellier II, CC 051, F-34095 Montpellier
  • Alain Dervieux INRIA, 2003 Route des Lucioles, F-06902 Sophia-Antipolis

Keywords:

nite-element, nite-volume, positivity, maximum principle, scalar conservation law, Euler, ALE, multi-component, uid-structure interaction

Abstract

This paper considers a class of second-order accurate vertex-centered mixed niteelement nite-volume MUSCL schemes. These schemes apply to unstructured triangulations and tetrahedrizations and uxes are computed on an edge basis. We dene conditions under which these schemes satisfy a density-positivity statement for Euler ows, a maximum principle for a scalar conservation law and a multicomponent ow. This extends to an Arbitrary- Lagrangian-Eulerian formulation. Steady and unsteady ow simulations illustrate the accuracy and the robustness of these schemes.

Downloads

Download data is not yet available.

References

Abgrall R., On essentially non-oscillatory schemes on unstructured meshes, analysis and implementation

, Journal of Computational Physics, vol. 114, p. 45-58, 1994.

Abgrall R., How to prevent pressure oscillations in multicomponent ows: a quasi conservative

approach, Journal of Computational Physics, vol. 125, p. 150-160, 1996.

Arminjon P., Dervieux A., Construction of TVD-like articial viscosities on two-dimensional

arbitrary FEM grids, Journal of Computational Physics, vol. 106, p. 106, No 1, 176-198,

Arminjon P., Viallon M., Convergence of a nite volume extension of the Nessyahu-Tadmor

scheme on unstructured grids for a two-dimensional linear hyperbolic equation, SIAM J.

Num. Analysis, vol. 36, n 3, p. 738-771, 1999.

Baba K., Tabata M., On a conservative upwind nite element scheme for convective diffusion

equations, R.A.I.R.O Numer. Anal., vol. 15, p. 3-25, 1981.

Camarri S., Koobus B., Salvetti M.-V., Dervieux A., A low-diffusion MUSCL scheme for

LES on unstructured grids, Computers and Fluids, vol. 33, p. 1101-1129, 2004.

Catalano L. A., A new reconstruction scheme for the computation of inviscid compressible

ows on 3D unstructured grids, International Journal for Numerical Methods in Fluids,

vol. 40, n 1-2, p. 273-279, 2002.

Cockburn B., Shu C.-W., TVB Runge-Kutta local projection discontinuous Galerkin nite element

method for conservation laws II: General framework, Mathematics of Computation,

vol. 52, p. 411-435, 1989.

Debiez C., Approximation et linéarisation d'écoulements aérodynamiques instationnaires, PhD

thesis, University of Nice, France (in French), 1996.

Debiez C., Dervieux A., Mer K., Nkonga B., Computation of Unsteady Flows with Mixed Finite

Volume/Finite Element Upwind Methods, International Journal for Numerical Methods

in Fluids, vol. 27, p. 193-206, 1998.

Deconinck H., Roe P., Struijs R., A Multidimensional Generalization of Roe's Flux Difference

Splitter for the Euler Equations, Computers and Fluids, vol. 22, n 23, p. 215-222, 1993.

Einfeldt B., Munz C. D., Roe P. L., Sjogreen B., On Godunov-type methods near low densities

, Journal of Computational Physics, vol. 92, p. 273-295, 1991.

Farhat C., High performance simulation of coupled nonlinear transient aeroelastic problems,

Special course on parallel computing in CFD. n R-807, NATO AGARD Report, October,

Farhat C., Geuzaine P., Grandmont C., The Discrete Geometric Conservation Law and the

nonlinear stability of ALE schemes for the solution of ow problems on moving grids, J.

of Computational Physics, vol. 174, p. 669-694, 2001.

Farhat C., Lesoinne M., Two efcient staggered procedures for the serial and parallel solution

of three-dimensional nonlinear transient aeroelastic problems, Comput. Meths. Appl.

Mech. Engrg., vol. 182, p. 499-516, 2000.

Fezoui L., Dervieux A., Finite-element non oscillatory schemes for compressible ows, Symposium

on Computational Mathematics and Applications n 730, Publications of university

of Pavie (Italy), 1989a.

Fezoui L., Stoufet B., A class of implicit schemes for Euler simulations with unstructured

meshes, Journal of Computational Physics, vol. 84, n 1, p. 174-206, 1989b.

Godlewski E., Raviart P.-A., Numerical approximation of hyperbolic systems of conservation

law, Springer, 1996.

Harten A., High resolution schemes for hyperbolic conservation laws, Journal of Computational

Physics, vol. 49, p. 357-393, 1983.

Harten A., Engquist B., Osher S., Chakravarthy S., Uniformly high-order accurate essentially

non oscillatory schemes, III, Journal of Computational Physics, vol. 71, p. 231-303, 1987.

Jameson A., Articial Diffusion, Upwind Biasing, Limiters and their Effect on Accuracy and

Multigrid Convergence in Transonic and Hypersonic Flows, AIAA paper 93-3359, 1993.

Larrouturou B., How to Preserve the Mass Fraction Positivity when Computing Compressible

Multi-component Flows, Journal of Computational Physics, vol. 95, p. 59-84, 1991.

Linde T., Roe P., On multidimensional positively conservative high resolution schemes, AIAA

paper 97-2098, 1998.

Mer K., Variational analysis of a mixed element/volume scheme with fourth-order viscosity

on general triangulations, Computer Methods in Applied Mechanics and Engineering, vol.

, p. 45-62, 1998.

Murrone A., Guillard H., A ve equation model for compressible two-phase ow computations

, Journal of Computational Physics, vol. 202, n 2, p. 664-698, 2005.

Perthame B., Khobalate B., Maximum Principle on the Entropy and Minimal Limitations for

Kinetic Scheme, Rapport de recherche n 1628, INRIA, 1992.

Perthame B., Shu C., On positivity preserving nite-volume schemes for Euler equations,

Numerical Mathematics, vol. 73, p. 119-130, 1996.

Piperno S., Depeyre S., Criteria for the Design of Limiters yielding efcient high resolution

TVD schemes, Comput. & Fluids, vol. 27, n 2, p. 183-197, 1998.

Selmin V., Formaggia L., Unied construction of nite element and nite volume discretizations

for compressible ows, International Journal for Numerical Methods in Engineering,

vol. 39, n 1, p. 1-32, 1998.

Shu C., Osher S., Efcient Implementation of Essential Non-oscillatory Shock Capturing

Schemes, Journal of Computational Physics, vol. 77, p. 439-471, 1988.

Sidilkover D., A Genuinely Multidimensional Upwind Scheme and Efcient Multigrid Solver

for the Compressible Euler Equations, ICASE report no. 94-84, 1994.

Stoufet B., Periaux J., Fezoui L., Dervieux A., 3-D Hypersonic Euler Numerical Simulation

around Space Vehicles using Adapted Finite Elements, 25th AIAA Aerospace Meeting,

Reno (1987), AIAA paper 86-0560, 1996.

Sweby P. K., High resolution schemes using limiters for hyperbolic conservation laws, SIAM

Journal in Numerical Analysis, vol. 21, p. 995-1011, 1984.

Van Leer B., Towards the Ultimate Conservative Difference Scheme V: A Second Order

Sequel to Godunov's Method, Journal of Computational Physics, vol. 32, p. 101-136,

Venkatakrishnan V., A perspective on unstructured grid ow solvers, AIAA Journal, vol. 34,

p. 533-547, 1996.

Venkatakrisnan V. et al., Barriers and Challenges in CFD, ICASE Workshop, Kluwer Acad.

Pub., ICASE/LaRC Interdisciplinary Series, vol. 6, p. 299-313, 1998.

Whitaker D., Grossman B., Löhner R., Two-Dimensional Euler Computations on a Triangular

Mesh Using an Upwind, Finite-Volume Scheme, AIAA paper 89-0365, 1989.

Yates E., AGARD standard aeroelastic conguration for dynamic response, candidate conguration

I. - Wing 445.6, NASA TM-100492, 1987.

Downloads

Published

2006-06-21

How to Cite

Cournède, P.-H. ., Koobus, B. ., & Dervieux, A. . (2006). Positivity statements for a mixed-element-volume scheme on xed and moving grids. European Journal of Computational Mechanics, 15(7-8), 767–798. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2045

Issue

Section

Original Article

Most read articles by the same author(s)