Total energy conservation in ALE schemes for compressible flows
DOI:
https://doi.org/10.13052/EJCM.19.337-363Keywords:
Arbitrary Lagrangian Eulerian, compressible flow, spatial discretization, discrete geometric conservation law, total energy conservationAbstract
The numerical prediction of interaction phenomena between a compressible flow model with a moving domain and other physical models requires that the work performed on the fluid is properly translated into total fluid energy variation. We present a numerical model relying on an Arbitrary Lagrangian-Eulerian (ALE) unstructured vertex-centered finite volume that satisfies this condition together with the Geometric Conservation Law. We apply this numerical scheme to the solution of a 3D fluid-structure interaction problem. The results are contrasted with those obtained by the energy non-conservative counterpart.
Downloads
References
Cournède P.-H., Koobus B., Dervieux A., "Positivity statements for a Mixed-Element-Volume
scheme on fixed and moving grids" , Revue Européenne des Eléments Finis, vol. 15, n° 7-8,
p. 767-799, 2006.
Dubuc L., Cantariti F., Woodgate M., Gribben B., Badcock K., Richards B., "A grid deformation
technique for unsteady flow computations", journal = "Int. J. Num. Meth. Fluids." , ,
vol. 32, p. 285-311, 2000.
Fanion T., Fernandez M., Le Tallec P., "Deriving Adequate Formulations for Fluid Structure
Interaction Problems : from ALE to Transpiration" , Revue Européenne des Eléments Finis,
vol. 9, n° 6-7, p. 681-708, 2000.
Farhat C., "High performance simulation of coupled nonlinear transient aeroelastic problems",
Special course on parallel computing in CFD. n° R-807, NATO AGARD Report, October,
a.
Farhat C., "High performance simulation of coupled nonlinear transient aeroelastic problems",
type = "Special course on parallel computing in CFD", Technical Report n° R-807, NATO
AGARD Report, October, 1995b.
Farhat C., Geuzaine P., Grandmont C., "The Discrete Geometric Conservation Law and the
nonlinear stability of ALE schemes for the solution of flow problems on moving grids" , J.
of Computational Physics, vol. 174, p. 669-694, 2001.
Farhat C., Lesoinne M., "Two efficient staggered procedures for the serial and parallel solution
of three-dimensional nonlinear transient aeeroelastic problems" , Comp. Meths. Appl. Mech.
Eng., vol. 182, n° 3-4, p. 499-515, 2000.
Farhat C., Lesoinne M., Le Tallec P., "Load and motion transfer algorithms for Fluid/Structure
iteraction problems with Non-Matching discrete interfaces: momentum and energy conservation,
optimal discretization and application to aeroelasticity", journal = "Comp. Meth.
Appl. Mech. Eng." , , vol. 157, p. 95-114, 1998.
Fernandez M., Le Tallec P., "Un nouveau problème spectral en interaction fluide-structure avec
transpiration = A new spectral problem in fluid-structure interaction with transpiration" ,
Comptes rendus de l’Académie des sciences. Série 1, Mathématique, vol. 334, n° 2, p. 167-
, 2002.
Grandmont C., Maday Y., "Fluid-structure interaction: a theoretical point of view" , Revue
Européenne des Eléments Finis, vol. 9, n° 6-7, p. 633-654, 2000.
Guillard G., Farhat C., "On the significance of the geometric conservation law for flow computation
on moving meshes" , Comput. Meth. Appl. Mech. Eng., vol. 190, p. 1467, 2000.
Hirt C. W., Amsden A. A., Cook J. L., "An arbitrary Lagrangian-Eulerian computiong method
for all flow speeds" , Journal of Computational Physics, vol. 14, p. 227-253, 1974.
Koobus B., Farhat C., "Second-order time accurate and geometrically conservative implicit
schemes for flow computation on unstructured dynamic meshes" , Comput. Meth. Appl.
Mech. Eng., vol. 170, p. 103, 1999.
Landau L., Lifshitz E., Fluid Mechanics, 2nd. edn, Butterworth - Heinemann, 1987.
Le Tallec P., Fernandez M., "Calcul d’écoulements en domaines déformables : de l’ALE à la
transpiration (in french)" , La Houille Blanche, vol. 6, p. 51-77, 2000.
Le Tallec P., Gerbeau J.-F., Hauret P., Vidrascu M., "Fluid structure interaction problems in
large deformation" , Comptes Rendus, Mécanique, vol. 333, n° 12, p. 910-922, 2005.
Lesoinne M., Farhat C., "Geometric conservation laws for flow problems with moving boundaries
and deformable meshes and their impact on aeroelastic computations" , Comp. Meth.
Appl. Mech. Eng., vol. 134, p. 71-90, 1996.
Leyland P., Carstens V., Blom F., Tefy T., "Fully coupled fluide-structure algorithms for aeroelasticity
and forced vibration induced flutter" , Revue Européenne des Eléments Finis, vol.
, n° 6-7, p. 763-803, 2000.
Mani S., "Truncation error and energy conservation for fluid structure interactions" , Comput.
Methods Appl. Mech. Engrg., vol. 192, n° 43, p. 4769-4804, 2003.
Nkonga B., Guillard H., "Godunov type method on non-structured meshes for threedimensional
moving boundary problems" , Comput. Methods Appl. Mech. Eng., vol. 113,
n° 1-2, p. 183-204, 1994.
Piperno S., Farhat C., "Design of efficient partitioned procedures for the transient solution of
aeroelastic problems" , Revue Européenne des Eléments Finis, vol. 9, n° 6-7, p. 655-680,
Thomas P., Lombard C., "Geometric conservation law and its application to flow computations
on moving grids" , AIAA Journal, vol. 17, p. 1030-1037, 1979.
Yates E., "AGARD standard aeroelastic configuration for dynamic response, candidate configuration
I. - Wing 445.6" , NASA TM-100492, 1987.