Total energy conservation in ALE schemes for compressible flows

Authors

  • Alain Dervieux INRIA, Projet Tropics, BP 93, 06902 Sophia-Antipolis cedex, France
  • Charbel Farhat Dept of Mechanical Engineering and Institute for Computational and Mathematical Engineering, Stanford University, Building 500 Stanford CA 94305-3035, USA
  • Bruno Koobus Mathématiques, université de Montpellier II, CC.051 34095 Montpellier, France
  • Mariano Vázquez CASE Dpt. Barcelona Supercomputing Center BSC-CNS C/ Gran Capitán 2 2a Planta 08034 Barcelona, Spain

DOI:

https://doi.org/10.13052/EJCM.19.337-363

Keywords:

Arbitrary Lagrangian Eulerian, compressible flow, spatial discretization, discrete geometric conservation law, total energy conservation

Abstract

The numerical prediction of interaction phenomena between a compressible flow model with a moving domain and other physical models requires that the work performed on the fluid is properly translated into total fluid energy variation. We present a numerical model relying on an Arbitrary Lagrangian-Eulerian (ALE) unstructured vertex-centered finite volume that satisfies this condition together with the Geometric Conservation Law. We apply this numerical scheme to the solution of a 3D fluid-structure interaction problem. The results are contrasted with those obtained by the energy non-conservative counterpart.

Downloads

Download data is not yet available.

References

Cournède P.-H., Koobus B., Dervieux A., "Positivity statements for a Mixed-Element-Volume

scheme on fixed and moving grids" , Revue Européenne des Eléments Finis, vol. 15, n° 7-8,

p. 767-799, 2006.

Dubuc L., Cantariti F., Woodgate M., Gribben B., Badcock K., Richards B., "A grid deformation

technique for unsteady flow computations", journal = "Int. J. Num. Meth. Fluids." , ,

vol. 32, p. 285-311, 2000.

Fanion T., Fernandez M., Le Tallec P., "Deriving Adequate Formulations for Fluid Structure

Interaction Problems : from ALE to Transpiration" , Revue Européenne des Eléments Finis,

vol. 9, n° 6-7, p. 681-708, 2000.

Farhat C., "High performance simulation of coupled nonlinear transient aeroelastic problems",

Special course on parallel computing in CFD. n° R-807, NATO AGARD Report, October,

a.

Farhat C., "High performance simulation of coupled nonlinear transient aeroelastic problems",

type = "Special course on parallel computing in CFD", Technical Report n° R-807, NATO

AGARD Report, October, 1995b.

Farhat C., Geuzaine P., Grandmont C., "The Discrete Geometric Conservation Law and the

nonlinear stability of ALE schemes for the solution of flow problems on moving grids" , J.

of Computational Physics, vol. 174, p. 669-694, 2001.

Farhat C., Lesoinne M., "Two efficient staggered procedures for the serial and parallel solution

of three-dimensional nonlinear transient aeeroelastic problems" , Comp. Meths. Appl. Mech.

Eng., vol. 182, n° 3-4, p. 499-515, 2000.

Farhat C., Lesoinne M., Le Tallec P., "Load and motion transfer algorithms for Fluid/Structure

iteraction problems with Non-Matching discrete interfaces: momentum and energy conservation,

optimal discretization and application to aeroelasticity", journal = "Comp. Meth.

Appl. Mech. Eng." , , vol. 157, p. 95-114, 1998.

Fernandez M., Le Tallec P., "Un nouveau problème spectral en interaction fluide-structure avec

transpiration = A new spectral problem in fluid-structure interaction with transpiration" ,

Comptes rendus de l’Académie des sciences. Série 1, Mathématique, vol. 334, n° 2, p. 167-

, 2002.

Grandmont C., Maday Y., "Fluid-structure interaction: a theoretical point of view" , Revue

Européenne des Eléments Finis, vol. 9, n° 6-7, p. 633-654, 2000.

Guillard G., Farhat C., "On the significance of the geometric conservation law for flow computation

on moving meshes" , Comput. Meth. Appl. Mech. Eng., vol. 190, p. 1467, 2000.

Hirt C. W., Amsden A. A., Cook J. L., "An arbitrary Lagrangian-Eulerian computiong method

for all flow speeds" , Journal of Computational Physics, vol. 14, p. 227-253, 1974.

Koobus B., Farhat C., "Second-order time accurate and geometrically conservative implicit

schemes for flow computation on unstructured dynamic meshes" , Comput. Meth. Appl.

Mech. Eng., vol. 170, p. 103, 1999.

Landau L., Lifshitz E., Fluid Mechanics, 2nd. edn, Butterworth - Heinemann, 1987.

Le Tallec P., Fernandez M., "Calcul d’écoulements en domaines déformables : de l’ALE à la

transpiration (in french)" , La Houille Blanche, vol. 6, p. 51-77, 2000.

Le Tallec P., Gerbeau J.-F., Hauret P., Vidrascu M., "Fluid structure interaction problems in

large deformation" , Comptes Rendus, Mécanique, vol. 333, n° 12, p. 910-922, 2005.

Lesoinne M., Farhat C., "Geometric conservation laws for flow problems with moving boundaries

and deformable meshes and their impact on aeroelastic computations" , Comp. Meth.

Appl. Mech. Eng., vol. 134, p. 71-90, 1996.

Leyland P., Carstens V., Blom F., Tefy T., "Fully coupled fluide-structure algorithms for aeroelasticity

and forced vibration induced flutter" , Revue Européenne des Eléments Finis, vol.

, n° 6-7, p. 763-803, 2000.

Mani S., "Truncation error and energy conservation for fluid structure interactions" , Comput.

Methods Appl. Mech. Engrg., vol. 192, n° 43, p. 4769-4804, 2003.

Nkonga B., Guillard H., "Godunov type method on non-structured meshes for threedimensional

moving boundary problems" , Comput. Methods Appl. Mech. Eng., vol. 113,

n° 1-2, p. 183-204, 1994.

Piperno S., Farhat C., "Design of efficient partitioned procedures for the transient solution of

aeroelastic problems" , Revue Européenne des Eléments Finis, vol. 9, n° 6-7, p. 655-680,

Thomas P., Lombard C., "Geometric conservation law and its application to flow computations

on moving grids" , AIAA Journal, vol. 17, p. 1030-1037, 1979.

Yates E., "AGARD standard aeroelastic configuration for dynamic response, candidate configuration

I. - Wing 445.6" , NASA TM-100492, 1987.

Downloads

Published

2010-02-23

How to Cite

Dervieux, A. ., Farhat, C. ., Koobus, B. ., & Vázquez, M. . (2010). Total energy conservation in ALE schemes for compressible flows. European Journal of Computational Mechanics, 19(4), 337–363. https://doi.org/10.13052/EJCM.19.337-363

Issue

Section

Original Article

Most read articles by the same author(s)