Une stratégie multi-échelle pour l’étude paramétrique de détails géométriques au sein de structures en contacts multiples
DOI:
https://doi.org/10.13052/REMN.16.1011-1036Keywords:
multiscale strategy, multiresolution, frictional contact, X-FEMAbstract
This paper presents a multiscale strategy dedicated to the parametric study of structural details inside a structure with multiple friction contacts. The first point of the method uses a micro-macro approach. It is based on a domain decomposition in substructures and interfaces, which involves the resolution of independent “micro” problems in each substructures and transfers the “macro” information only via the interfaces. In a second point, a multiresolution strategy is used in order to reduce the computational cost in the case of problems with design variables. Moreover, the last one consists in modelling the geometry of details without remeshing. On the one hand, it uses a local enrichissement method, the X-FEM, and, on the other hand, level set functions enable one to easily “activate” the detail.
Downloads
References
Boucard P., Champaney L., « A suitable computational strategy for the parametric analysis of
problems with multiple contact », International Journal for Numerical Methods in Engineering,
vol. 57, p. 1259-1281, 2003.
Boucard P., Champaney L., « Approche multirésolution pour l’étude paramétrique d’assemblages
par contact et frottement », Revue européenne des éléments finis, vol. 13, p. 437-448,
Champaney L., Cognard J., Dureisseix D., Ladevèze P., « Large scale applications on parallel
computers of a mixed domain decomposition method », Computational Mechanics, vol. 19,
p. 253-263, 1997.
Champaney L., Cognard J., Ladevèze P., « Modular analysis of assemblages of threedimensional
structures with unilateral contact conditions », Computers and Structures, vol.
, p. 249-266, 1999.
Clément A., Nouy A., Schoefs F., Moës N., « Méthode des éléments finis stochastiques étendus
pour le calcul de structures à géométrie aléatoire », 8e colloque national en calcul des
structures, Giens, France, 2007.
Combescure A., Rannou J., Gravouil A., « A multigrid eXtended Finite Element Method for
elastic crack growth simulation », European Journal of computational Mechanics, vol. 16,
p. 161-182, 2007.
Daux C., Moës N., Dolbow J., Sukumar N., Belytschko T., « Arbitrary branched and intersecting
cracks with the extended finite element method », International Journal for Numerical
Methods in Engineering, vol. 48, p. 1741-1760, 2000.
Fish J., Yuan Z., « Multiscale enrichment based on partition of unity », International Journal
for Numerical Methods in Engineering, vol. 62, p. 1341-1359, 2005.
Guidault P., Allix O., Champaney L., Cornuault C., « Une approche micro-macro pour le suivi
de fissure avec enrichissement local », Revue européenne de mécanique numérique, vol. 15,
p. 187-198, 2006.
Guidault P., Allix O., Champaney L., Cornuault C., « A multiscale Extended Finite Element
Method for crack propagation », Computer Methods in Applied Mechanics and Engineering,
vol. 197, p. 381-399, 2008.
Guidault P., Allix O., Champaney L., Navarro J., « A two-scale approach with homogenization
for the computation of cracked structures », Computers and Structures, vol. 85, p. 1360-
, 2007.
Kim Y., Yoon G., « Multi-resolution multi-scale topology optimization : a new paradigm »,
International Journal of Solids and Structures, vol. 37, p. 5529-5559, 2000.
Ladevèze P., Loiseau O., Dureisseix D., « A micro-macro and parallel computational strategy
for highly heterogeneous structures », International Journal for Numerical Methods in Engineering,
vol. 52, n° 1-2, p. 121-138, 2001.
Ladevèze P., Nonlinear Computational Structural Mechanics - New Approaches and non-
Incremental Methods of Calculation, Springer Verlag, 1999.
Ladevèze P., Nouy A., « On a multiscale computational strategy with time and space homogenization
for structural mechanics », Computer Methods in Applied Mechanics and Engineering,
vol. 192, p. 3061-3088, 2003.
Ladevèze P., Nouy A., Loiseau O., « A multiscale computational approach for contact problems
», Computer Methods in Applied Mechanics and Engineering, vol. 191, p. 4869-4891,
Moës N., Dolbow J., Belytschko T., « A finite element method for crack growth without remeshing
», International Journal for Numerical Methods in Engineering, vol. 46, p. 131-150,
Nouy A., Une stratégie de calcul multiéchelle avec homogénéisation en temps et en espace pour
le calcul de structures fortement hétérogènes, Thèse de doctorat, ENS Cachan, 2003.
Osher S., Sethian J., « Fronts propaging with curvature-dependent speed : Algorithms based on
Hamilton-Jacobi formulations », Journal of Computational Physics, vol. 79, p. 12-49, 1988.
Stolarska M., Chopp D. L., Moës N., Belytschko T., « Modelling Crack Growth by Level Sets
and the Extended Finite Element Method », International Journal for Numerical Methods
in Engineering, vol. 51, n° 8, p. 943-960, 2001.
Sukumar N., Chopp D. L., Moës N., Belytschko T., « Modeling holes and inclusions by level
sets in the extended finite-element method », Computer Methods in Applied Mechanics and
Engineering, vol. 190, p. 6183-6200, 2000.
Verpeaux P., Charras T., Millard A., Une approche moderne du calcul des structures, Fouet JM,
Ladevèze P, Ohayon R editors. Calcul des Structures et Intelligence artificielle, 1988.