Une approche micro-macro pour le suivi de ssure avec enrichissement local
Keywords:
multiscale strategy, crack propagation, X-FEM, homogenization, macroenrichment, microenrichmentAbstract
In this paper, a multiscale strategy for the analysis of crack propagation is presented. The purposes of this strategy are, rst, to separate the local effects from the global effects in order to keep a macromesh unchanged during the crack's propagation and, second, to enable one to use a proper ne-scale description only where it is required. Two aspects are discussed: the rst is the choice of the macroscale in order to include the macroeffect of a crack; the second is the use of a decomposition of the domain into substructures and interfaces in order to limit the use of the rened scale only around the crack. The integration of the X-FEM as a local enrichment method for the description of a crack is also presented.
Downloads
References
Daux C., Moës N., Dolbow J., Sukumar N., and Belytschko T., « Arbitrary branched and intersecting
cracks with the extended nite element method », International Journal for Numerical
Methods in Engineering, vol. 48, p. 1741-1760, 2000.
Guidault P.-A., Allix O., Champaney L., and Navarro J.-P., « A micro-macro approach for crack
propagation with local enrichment », Proceedings of the Seventh International Conference
on Computational Structures Technology, Lisbon, Portugal, 2004.
Ladevèze P., Nonlinear Computational Structural Mechanics - New Approaches and non-
Incremental Methods of Calculation, Springer Verlag, 1999.
Ladevèze P., Loiseau O., and Dureisseix D., « A micro-macro and parallel computational strategy
for highly heterogeneous structures », International Journal for Numerical Methods in
Engineering, vol. 52, p. 121-138, 2001.
Melenk J. and Babuka I., « The Partition of Unity Finite Element Method : Basic Theory
and Applications », Computer Methods in Applied Mechanics and Engineering, vol. 139,
p. 289-314, 1996.
Moës N., Dolbow J., and Belytschko T., « A nite element method for crack growth without
remeshing », International Journal for Numerical Methods in Engineering, vol. 46, p. 131-
, 1999.
Oliver J., Huespe A. E., Pulido M., and Chaves E., « From continuum mechanics to fracture
mechanics : the strong discontinuity approach », Engineering Fracture Mechanics, vol. 69,
p. 113-136, 2002.
Stolarska M., Chopp D. L., Moës N., and Belytschko T., « Modelling Crack Growth by Level
Sets and the Extended Finite Element Method », International Journal for Numerical
Methods in Engineering, vol. 51, p. 943-960, 2001.
Strouboulis T., Copps K., and Babuka I., « The generalized nite element method », Computer
Methods in Applied Mechanics and Engineering, vol. 190, p. 4081-4193, 2001.