Une approche micro-macro pour le suivi de ssure avec enrichissement local

Authors

  • Pierre-Alain Guidault Laboratoire de Mécanique et Technologie, ENS de Cachan CNRS/Université Pierre et Marie Curie 61 avenue du Président Wilson, F-94235 Cachan cedex
  • Olivier Allix Laboratoire de Mécanique et Technologie, ENS de Cachan CNRS/Université Pierre et Marie Curie 61 avenue du Président Wilson, F-94235 Cachan cedex
  • Laurent Champaney Laboratoire de Mécanique et Technologie, ENS de Cachan CNRS/Université Pierre et Marie Curie 61 avenue du Président Wilson, F-94235 Cachan cedex
  • Christian Cornuault Dassault Aviation 78 quai Marcel Dassault, Cedex 300, F-92552 Saint-Cloud Cedex

Keywords:

multiscale strategy, crack propagation, X-FEM, homogenization, macroenrichment, microenrichment

Abstract

In this paper, a multiscale strategy for the analysis of crack propagation is presented. The purposes of this strategy are, rst, to separate the local effects from the global effects in order to keep a macromesh unchanged during the crack's propagation and, second, to enable one to use a proper ne-scale description only where it is required. Two aspects are discussed: the rst is the choice of the macroscale in order to include the macroeffect of a crack; the second is the use of a decomposition of the domain into substructures and interfaces in order to limit the use of the rened scale only around the crack. The integration of the X-FEM as a local enrichment method for the description of a crack is also presented.

Downloads

Download data is not yet available.

References

Daux C., Moës N., Dolbow J., Sukumar N., and Belytschko T., « Arbitrary branched and intersecting

cracks with the extended nite element method », International Journal for Numerical

Methods in Engineering, vol. 48, p. 1741-1760, 2000.

Guidault P.-A., Allix O., Champaney L., and Navarro J.-P., « A micro-macro approach for crack

propagation with local enrichment », Proceedings of the Seventh International Conference

on Computational Structures Technology, Lisbon, Portugal, 2004.

Ladevèze P., Nonlinear Computational Structural Mechanics - New Approaches and non-

Incremental Methods of Calculation, Springer Verlag, 1999.

Ladevèze P., Loiseau O., and Dureisseix D., « A micro-macro and parallel computational strategy

for highly heterogeneous structures », International Journal for Numerical Methods in

Engineering, vol. 52, p. 121-138, 2001.

Melenk J. and Babuka I., « The Partition of Unity Finite Element Method : Basic Theory

and Applications », Computer Methods in Applied Mechanics and Engineering, vol. 139,

p. 289-314, 1996.

Moës N., Dolbow J., and Belytschko T., « A nite element method for crack growth without

remeshing », International Journal for Numerical Methods in Engineering, vol. 46, p. 131-

, 1999.

Oliver J., Huespe A. E., Pulido M., and Chaves E., « From continuum mechanics to fracture

mechanics : the strong discontinuity approach », Engineering Fracture Mechanics, vol. 69,

p. 113-136, 2002.

Stolarska M., Chopp D. L., Moës N., and Belytschko T., « Modelling Crack Growth by Level

Sets and the Extended Finite Element Method », International Journal for Numerical

Methods in Engineering, vol. 51, p. 943-960, 2001.

Strouboulis T., Copps K., and Babuka I., « The generalized nite element method », Computer

Methods in Applied Mechanics and Engineering, vol. 190, p. 4081-4193, 2001.

Downloads

Published

2006-06-26

How to Cite

Guidault, P.-A. ., Allix, O., Champaney, L. ., & Cornuault, C. . (2006). Une approche micro-macro pour le suivi de ssure avec enrichissement local. European Journal of Computational Mechanics, 15(1-3), 187–198. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2133

Issue

Section

Original Article