Approche multirésolution pour l’étude paramétrique d’assemblages par contact et frottement
Keywords:
assemblies, contact, friction, uncertainties, parametric studyAbstract
The objective of this work is to develop a suitable strategy for the parametric analysis of assemblies including contact with friction. Each configuration of an assembly is associated with a choice of values of the parameters (coefficient of friction, prestress). Rather than to carry out a complete calculation for each set of parameters, we use the capacity of the LATIN method [LAD 99] to re-use the solution of a given problem (associated with a set of parameters) to solve others of them.
Downloads
References
[ALI 01] ALLIX O., VIDAL P., « A new multi-solution approach suitable for structural identification
problems. », Computer Methods in Applied Mechanics and Engineering, vol. 191,
, p. 2727-2758.
[BEN 88] BENAROYA H., REHAK M., « Finite element methods in probabilistic structural
analysis : A selective review », Applied Mechanics Reviews, vol. 41, no 5, 1988 , p. 201-213.
[BLA 00] BLANZÉ C., CHAMPANEY L., VÉDRINE P., « Contact problems in the design
of a superconducting quadrupole prototype », Engineering Computations, vol. 17, no 2/3,
p. 136-153, 2000.
[BOU 99] BOUCARD P.-A., LADEVEZE P., « Une application de la méthode LATIN au calcul
multi-résolutions de structures non-linéaires », Revue européenne des Éléments Finis, vol. 8,
no 8, 1999, p. 903-920.
[BOU 03] BOUCARD P.A., CHAMPANEY L., « A suitable computational strategy for the parametric
analysis of problems with multiple contact », International Journal for Numerical
Methods in Engineering, vol. 57, 2003, p. 1259-1281.
[CHA 95] BLANZÉ C., CHAMPANEY L., COGNARD J.Y., LADEVÈZE P., « A modular approach
to structure assembly computations. Application to contact problems », Engineering
Computations, vol. 13, no 1, 1995, p. 15-32.
[HIL 02] HILD P., « On finite element uniqueness studies for Coulomb’s frictional contact
model », International Journal of Applied Mathematics and Computer Science, vol. 12,
, p. 41-50.
[KLE 92] KLEIBER M., HIEN T.D., Basic perturbation technique and computer implementation,
John Willey & Sons, 1992.
[KOS 99] KOSIOR F., GUYOT N., MAURICE G., « Analysis of frictional contact problem
using boundary element method and domain decomposition method », International Journal
for Numerical Methods in Engineering, vol. 46, 1999, p. 65-82.
[LAD 99] LADEVÈZE, P., Nonlinear Computational Structural Mechanics - New Approaches
and Non-Incremental Methods of Calculation, Springer Verlag, 1999.
[MAC 97] MACIAS O.F., LEMAIRE M., « Éléments finis stochastiques et fiabilité. Application
en mécanique de la rupture », Revue francaise de génie civil, vol. 1, no 2, 1997.
[SPE 75] SPENCE A., « The Hertz contact problem with finite friction », Journal of Elasticity,
vol. 5, no 3-4, 1975, p. 297-319.