Modèle numérique pour l’étude des structures fissurées soumises à des contraintes résiduelles

Authors

  • Zohra Gaiech Laboratoire Roberval – UTC-CNRS, Université de Technologie de Compiègne GSM – Centre de Recherches de Royalieu BP 20529, F-60200 Compiègne
  • Hocine Kebir Laboratoire Roberval – UTC-CNRS, Université de Technologie de Compiègne GSM – Centre de Recherches de Royalieu BP 20529, F-60200 Compiègne
  • Laurent Chambon EADS, Centre Commun de Recherches 12, Rue Pasteur BP 76, F-92152 Suresnes cedex
  • Jean-Marc Roelandt Laboratoire Roberval – UTC-CNRS, Université de Technologie de Compiègne GSM – Centre de Recherches de Royalieu BP 20529, F-60200 Compiègne

DOI:

https://doi.org/10.13052/REMN.16.627-642

Keywords:

residual stresses, fracture mechanics, boundary element, superposition principle

Abstract

During their operational use the aeronautic structures can be submitted to relatively moderate cyclic loads and more rarely to stern loads. These last can generate residual stress field, which will influence the in-service behaviour. Otherwise, residual stress field can be created in a voluntary way by a specific treatment (compressive stresses). They permit to improve fatigue tolerance behaviour. This illustrates the importance of the study of the structure behavior under residual stresses, and the need to consider them in numerical simulations. The objective of this work is to develop a numerical method, based on the boundary element method and the principle of superposition, to assess the influence of residual stresses on fracture mechanics parameters.

Downloads

Download data is not yet available.

References

Aliabadi M. H., The boundary element method, volume 2: Applications in solids and

structures, John Wiley and Sons, 2002.

Bonnet M., Equations intégrales et éléments de frontière en mécanique des solides, Ecole

polytechnique, 1994.

Brebbia C.A., Dominguez J., Boundary elements: an introductory course, Mc Graw-Hill,

st edition, 1989.

Guiggiani M., “A general algorithm for the numerical solution of hypersingular boundary

integral equations”, ASME journal of applied mechanics, vol. 59, 1992, p. 604-614.

Kebir H., Roelandt J.M., Foulquier J., “A new singular boundary element for crack problems:

Application to bolted joints”, Engineering Fracture Mechanics, vol. 62, 1999, p. 497-510.

Kebir H., Roelandt J. M., Gaudin J., « Simulation de la propagation de fissures dans les

solides élastiques en modes mixtes par la méthode des équations intégrales duales »,

Revue européenne des éléments finis, vol. 9, n° 8, 2000.

Lachat J.C., A further developpement of the boundary integral technique for elastostatics,

PhD thesis, University of Southampton, 1975.

Lachat J.C., Watson J.O., “Effective numerical treatment of boundary integral equations”,

International Journal for Numerical Methods in Engineering, vol. 10, 1976, p. 991-1005.

Leitao V., Aliabadi M.H., “The dual boundary element formulation for elastoplastic fracture

mechanics”, International Journal for Numerical Methods in Engineering, vol. 38, 1995,

p. 315-333.

Portela A., Aliabadi M.H., “The dual boundary element method: effective implementation for

crack problems”, International Journal for Numerical Methods in Engineering, 1992,

p. 1269-1287.

Portela A., Aliabadi M.H., Rooke D.P., “Dual Boundary element analysis of cracked plates:

singularity subtraction technique”, International Journal of Fracture, vol. 55, 1992, p. 17-

Standard test method for measurement of fracture toughness- ASTME 1820 (www.astm.org).

Downloads

Published

2007-09-20

How to Cite

Gaiech, Z., Kebir, H., Chambon, L. ., & Roelandt, J.-M. . (2007). Modèle numérique pour l’étude des structures fissurées soumises à des contraintes résiduelles. European Journal of Computational Mechanics, 16(5), 627–642. https://doi.org/10.13052/REMN.16.627-642

Issue

Section

Original Article