Etude des propriétés thermomécaniques et du phénomène de fissuration périodique des films d’oxyde à haute température

Cas du système Ni (111)/NiO (001)

Authors

  • Nicolas Vallino UTC, Laboratoire Roberval UMR 6066 F-60259 Compiègne
  • Laurent Lahoche Université de Picardie Jules Verne, Laboratoire Roberval UMR 6066, F-80025 Amiens
  • Jean-Marc Roelandt UTC, Laboratoire Roberval UMR 6066 F-60259 Compiègne
  • Vladimir Lorman LPM, CNRS Université de Montpellier 2, Faculté de Physique
  • Sergei Rochal Université de Rostov sur le Don Faculté de Physique, Russie

Keywords:

nickel oxidation, epitaxy, oxidation growth model, the Landau theory of phase transitions, periodic cracking, remeshing, finite element method

Abstract

We present a model for the calculation of stress and strain fields in the nickel oxide film during an oxidation process. It is based on a cristallographic and thermodynamic analysis of the interface. A numerical approach permitted to validate our model. The comparison of the experimental data obtained by performing a dissymmetrical oxidation with the numerical results is in good agreement. The model has also been used to define the initial states of a 2D or 3D numerical model which compute the behavior of the coated cracked metallic/oxide structure in the presence of cracks under mechanical load.

Downloads

Download data is not yet available.

References

Atkinson A., Taylor R.I., Goode P.D., “Transport processes in the Oxidation of Ni Studied

Using Tracers in Growing NiO Scales”, Oxidation of metals, vol. 13, 1979, p. 519.

Benzley S. E., “Representation of singularities with isoparametric finite elements”,

International Journal for Numerical Methods in Engineering, vol. 8, 1974, p. 537.

Bernstein H.L., “A model for the oxide growth stress and its effect on the creep of metals”,

Metallurgical transactions A, vol. 18A, 1987, p. 975.

Christensen T. M., Raoul C., Blakely J.M., “Change in oxide epitaxy on Ni(111) : effects of

oxidation temperature”, Applied Surface Science, vol. 26, 1986, p. 408.

Evans A. G., Radjev D., Douglas D.L., “The mechanical properties of nickel oxide and their

relationship to the morphology of thick oxide scales formed on nickel”, oxidation of

metals, vol. 4, 1972, p. 111.

Gaillet L., Viennot M., Berger P. et Moulin G., “Effect of NiO scales on the creep behavior of

Ni single crystals at 550 °C”, Materials Science and Engineering A, vol. 332, 2002,

p. 382.

Hamel V., Roelandt J. M., Gacel J. N., Schmidt F., “Finite element modeling of clinch

forming with automatic remeshing”, Computers and Structures, vol. 77, 2000, p. 185.

Lahoche L., Lorman V., Rochal S.B., Roelandt J.M., “Influence of interface ordering on the

thermomechanical properties of oxide-metal scale”, Surface and Coatings Technology,

vol. 86-87, 1996, p. 159.

Lahoche L, Lorman V., Rochal S. B., Roelandt J. M., “Substrate-induced mechanical and

dielectric properties of a ferroelectric thin film”, Journal of Applied Physics, vol. 91,

, p. 4973.

Landau L. D., Collected papers of L.D. Landau, Ter Haar, Pergamon, London, 1965, p. 193.

Landau L. D., Lifshitz E., Physique statistique, Editions Mir, 1967.

Lascaux P., Theodor R., Analyse numérique matricielle appliquée à l’art de l’ingénieur,

tome 2, Dunod, Paris 2000, p. 59.

Nagl M. M., Evans W. T., Hall D. J., “Saunders S.R.J., An in-situ investigation of the tensile

failure of oxide scales”, Oxidation of Metals, vol. 42, 1994, p. 105.

Nayrolles B., Touzot G., Villon P., Ricard A., “Diffuse approximation and diffuse elements”,

New Advances Comp. Struct. Mech., 1992, p. 143.

Pageau S. S., Biggers S. B. JR, “Enrichment of finite elements with numerical solutions for

singular stress fields”, International Journal for Numerical methods in Engineering,

vol. 40, 1997, p. 2693.

Saiki R. S., Kaduwela A. P., Osterwalder J., Fadley C. S., “Observation and characterization

of a strained lateral superlattice in the oxidation of Ni(001)”, Physical Review B, vol. 40,

, p. 1586.

Sheasby J.S., Cox D.S., “Scale development on Impure Nickel at High Temperatures”,

Oxidation of metal, vol. 37, 1992, p. 373.

Tolédano J.C., Toledano P., The Landau Theory of Phase Transitions, World-Scientific,

Singapore, 1987.

Touati A., Modélisation et simulation du comportement mécanique d’une structure oxydée à

haute température – Applications aux structures revêtues de type multicouches, Thèse de

doctorat, Compiègne, 1991.

Vallino N., Lahoche L., Lorman V.L., Rochal S.B., Roelandt J.M., “Influence of epitaxy and

ordering on the mechanical behaviour of an oxide layer on a metallic substrate”, Surface

and Coatings Technology, vol. 108-109, 1998, p. 442-448.

Vallino N., Gaillet L., Lahoche L., Roelandt J.M., Lorman V.L., Moulin G., Rochal S.B.,

“Experimental study and numerical modelling of the nickel oxide coating on the Ni(111)

surface”, Surface and Coatings Technology, vol. 135, 2000, p. 98.

Wang W. D., Wu N. J., Thiel P.A., Tringides M. C., “Epitaxial growth in a strained system :

Ni(100)-O(7×7)”, Surface Science, 282, 1993, p. 229.

Downloads

Published

2003-08-30

How to Cite

Vallino, N., Lahoche, L. ., Roelandt, J.-M. ., Lorman, V. ., & Rochal, S. . (2003). Etude des propriétés thermomécaniques et du phénomène de fissuration périodique des films d’oxyde à haute température: Cas du système Ni (111)/NiO (001). European Journal of Computational Mechanics, 12(5), 585–621. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2419

Issue

Section

Original Article