Robust implementation of contact under friction and large sliding with the eXtended finite element method
DOI:
https://doi.org/10.13052/EJCM.19.189-203Keywords:
X-FEM, frictional contact, large sliding, 3D, LBB, augmented lagrangianAbstract
An X-FEM formulation is proposed for the case of large sliding frictional interfaces. A continuous augmented lagrangian framework is adopted for contact and friction. We provide an algorithm for the selection of an appropriate discrete space for the lagrange multipliers, accounting for the transition between contact and free zones, and also between sliding and adherent zones. A 3D numerical test is realized with Code_Aster free software for the compression of a cylinder cut along a radial section and shows the ability of the model to capture such transitions.
Downloads
References
Alart P., Curnier A., A mixed formulation for frictional contact problems prone to Newton like
solution methods , Comp. Meth. Appl. Meth. Engng., vol. 92, p. 353-375, 1991.
Babu˜ska I., The finite element method with Lagrangian multipliers , Numerische Mathematik,
vol. 20, n° 3, p. 179-192, 1973.
Ben Dhia H., Zarroug M., Hybrid frictional contact particles-in elements , Revue Europénne
des éléments Finis, vol. 11, p. 417-430, 2002.
Brezzi F., Fortin M., Mixed and hybrid finite element methods, Springer - Verlag, 1991.
Béchet E., Moës N., Wohlmuth B., A stable lagrange multiplier space for stiff interface conditions
within the extended finite element method , Int. J. Numer. Meth. Engng., vol. 78, n° 8,
p. 931-954, 2009.
Chapelle D., Bathe K., The inf-sup test , Computers & Structures, vol. 47, n° 4/5, p. 537-545,
Dolbow J., Moës N., Belytschko T., An extended finite element method for modeling crack
growth with frictional contact , Computer Methods in Applied Mechanics and Engineering,
vol. 190, p. 6825-6846, 2001.
Dumont G., Algorithme des contraintes actives et contact unilatéral sans frottement , Revue
Européenne des Éléments Finis, vol. 4, n° 1, p. 55-73, 2001.
Géniaut S., Massin P., Moës N., Fissuration avec X-FEM et contact , Actes du 7ème Colloque
National en Calcul des Structures, Giens, 17-20 may, 2005.
Géniaut S., Massin P., Moës N., A stable 3D contact formulation for cracks using XFEM ,
Revue Européenne de Mécanique Numérique, vol. 16, n° 2, p. 259-275, 2007.
Khoei A., Nikbakht M., Contact friction modeling with the extended finite element method
(X-FEM) , Journal of Materials Processing Technology, vol. 177, p. 58-62, 2006.
Liu F., Borja R., A Contact algorithm for frictional crack propagation with the extended finite
element method , Int. J. Numer. Meth. Engng., vol. 76, p. 1489-1512, 2008.
Moës N., Béchet É., TourbierM., Imposing Dirichlet boundary conditions in the extended finite
element method , Int. J. Numer. Meth. Engng., vol. 67, n° 12, p. 1641-1669, 2006.
Moës N., Dolbow J., Belytschko T., A finite element method for crack growth without remeshing
, Int. J. Numer. Meth. Engng., vol. 46, p. 131-150, 1999.
Mourad H., Dolbow J., Harari I., A bubble-stabilized finite element method for Dirichlet constraints
on embedded interfaces , Int. J. Numer. Meth. Engng., vol. 69, n° 4, p. 772-793,
Nistor I., Guiton M., Massin P., Moës N., Géniaut S., An X-FEM approach for large sliding
contact along discontinuities , Int. J. Numer. Meth. Engng., vol. 78, n° 12, p. 1407-1435,