Numerical coupling between shakedown and periodic homogenization for heterogeneous elastic plastic media

Authors

  • Hélène Magoariec LMA - Laboratoire de Mécanique et d’Acoustique (CNRS, UPR 7051) & EGIM - Ecole Généraliste d’Ingénieurs de Marseille Technopôle de Château-Gombert F-13383 Marseille Cedex 13
  • Stéphane Bourgeois LMA - Laboratoire de Mécanique et d’Acoustique (CNRS, UPR 7051) & EGIM - Ecole Généraliste d’Ingénieurs de Marseille Technopôle de Château-Gombert F-13383 Marseille Cedex 13
  • Olivier Débordes LMA - Laboratoire de Mécanique et d’Acoustique (CNRS, UPR 7051) & EGIM - Ecole Généraliste d’Ingénieurs de Marseille Technopôle de Château-Gombert F-13383 Marseille Cedex 13

Keywords:

elastic plastic shakedown, static approach, kinematic approach, periodic homogenization, numerical modeling, 3D unit cell, convex optimization

Abstract

This paper presents a direct method to numerically study the strength, in the sense of shakedown, of elastic perfectly plastic media with a periodic microstructure, submitted to variable loads. The macroscopic admissible strength domains are obtained by solving constrained nonlinear optimization problems on a three-dimensional unit cell. These problems represent the shakedown analysis problems. Static and kinematic approaches of shakedown are tested by applying the developed method to a layered material and to a periodically perforated sheet.

Downloads

Download data is not yet available.

References

[AUN 90] AUNAY S., Architecture de logiciel de modélisation et traitements distribués, Thèse,

Université Technologique de Compiègne, France, 1990.

[BOR 01] BORNERT M., BRETHEAU T., GILORMINI P., Homogénéisation en mécanique des

matériaux, vol. 1, Hermes Sciences Europe Ltd., Paris, 2001.

[BOU 98] BOURGEOIS S., DEBORDES O., PATOU P., “Homogénéisation et plasticité des

plaques minces”, Revue Européenne des éléments finis, vol. 7, n1-2-3, 1998, p. 39-54.

[CAR 99] CARVELLI V., “Shakedown analysis of periodic heterogeneous materials by a kinematic

approach”, Strojnicky Casopis - Mechanical Engineering materials, vol. 50, n4,

, p. 229-240.

[CON 92] CONN A. R., GOULD N. I. M., TOINT P. L., LANCELOT: A Fortran Package for

Large-Scale Nonlinear Optimization, Springer-Verlag, Berlin, 1992.

[DEB 76] DEBORDES O., “Dualité des théorèmes statique et cinématique dans la théorie de

l’adaptation des milieux continus élastoplastiques”, C.R. Acad. Sci., vol. 282, 1976, p. 535-

[DEB 85] DEBORDES O., LICHT C., MARIGO J. J., MIALON P., MICHEL J. C., “Calcul

des charges limites de structures fortement hétérogènes”, Actes du Troisième Colloque

Tendances Actuelles en Calcul de Structures, 1985, p. 55-71.

[DEB 86] DEBORDES O., “Homogenization Computations in the Elastic or Plastic Collapse

Range. Applications to Unidirectional Composites and Perforated Sheets”, 4th. Int. Symp.

Inn. Meth. in Eng., Atlanta, 1986, Springer-Verlag, p. 453-458.

[HAC 01] HACHEMI A., MAGOARIEC H., DEBORDES O., WEICHERT D., “Application of

shakedown theory to layered composites”, ECCM II - 2nd Eur. Conf. on Comp. Mech.,

Cracow, Poland, June 26-29, 2001, Proceedings on Cd-rom (9 pages).

[KOE 78] KOENIG J. A., KLEIBER M., “On a new method of shakedown analysis”, Bull.

Acad. Polon. Sci. Ser. Sci. Techn., vol. 26, 1978, Page 165.

[KOI 60] KOITER W. T., “Progress in solid mechanics”, chapter General theorems for elasticplastic

solids, p. 165–221, Sneddon, I.N., Hill, R., 1960.

[LEN 84] LENE F., Contribution à l’étude des matériaux composites et de leurs endommagements,

Thèse, Université Paris VI, France, 1984.

[MAG 02] MAGOARIEC H., BOURGEOIS S., DEBORDES O., HACHEMI A., WEICHERT D.,

“A numerical approach of shakedown analysis coupled with periodic homogenization for

D elastic plastic media”, WCCM V - Fifth World Congress on Computational Mechanics,

Vienna, Autria, July 7-12 2002, Proceedings on Cd-rom (10 pages).

[MAG 04] MAGOARIEC H., BOURGEOIS S., DEBORDES O., “Elastic plastic shakedown

of 3D periodic heterogeneous media: a direct numerical approach”, Int. J. Plasticity,

vol. 20/8-9, 2004, p. 1655-1675.

[MEL 36] MELAN E., “Theorie statisch unbestimmter Systeme aus ideal-plastischem

Baustoff”, Sitber. Akad. Wiss. Wien, vol. Abt. IIa 145, 1936, p. 195-218.

[PIE 75] PIERRE D. A., LOWE M. J., Mathematical Programming Via Augmented Lagrangien,

An introduction with Computer Programs, Addison-Wesley Publ. Comp., 1975.

[SUQ 83] SUQUET P., “Analyse limite et homogénéisation”, C.R. Acad. Sci., Série II,

vol. 296, 1983, p. 1355-1358.

Downloads

Published

2004-05-04

How to Cite

Magoariec, H. ., Bourgeois, S. ., & Débordes, O. . (2004). Numerical coupling between shakedown and periodic homogenization for heterogeneous elastic plastic media. European Journal of Computational Mechanics, 13(5-7), 593 – 604. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2317

Issue

Section

Original Article